Skip to main content
Log in

Lamellar Level Correlations Between Mechanical Behavior and Composition in Mouse Bone

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We studied the lamellar level correlations between the local composition and local mechanical properties in the femur of two inbred strains of mice (A/J and C57BL/6J (B6)), with known differences in the average mineralization and long-bone mechanical properties, to gain insights into how their extracellular matrix is mineralized. The local elastic moduli and indentation yield strengths were determined using spherical nanoindentation stress-strain analysis, while Raman spectroscopy was used to determine the local composition around the indents in a total of 11 samples. Our results show a significant difference in the mineral-to-matrix ratio of the two strains of mice, with the A/J mice showing an overall higher mineral-to-matrix ratio and lower carbonate substitution in the mineral. These differences are prominent in the newer bone and become less significant as the bone matures. Additionally, local mineral-to-matrix ratio was found to be a good indicator of the local mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

adapted from Ref. 47 with permission.

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Fan and J.Y. Rho, J. Biomed. Mater. Res. Part A 67, 208 (2003).

    Article  Google Scholar 

  2. K. Tai, H.J. Qi, and C. Ortiz, J. Mater. Sci. Mater. Med. 16, 947 (2005).

    Article  Google Scholar 

  3. K.J. Goodwin and N.A. Sharkey, J. Orthop. Res. 20, 600 (2002).

    Article  Google Scholar 

  4. M.D. Morris and G.S. Mandair, Clin. Orthop. Relat. Res.® 469, 2160 (2011). https://doi.org/10.1007/s11999-010-1692-y.

    Article  Google Scholar 

  5. G.S. Mandair and M.D. Morris, BoneKEy Rep. 4, 620 (2015). https://doi.org/10.1038/bonekey.2014.115.

    Article  Google Scholar 

  6. M. Kazanci, P. Roschger, E. Paschalis, K. Klaushofer, and P. Fratzl, J. Struct. Biol. 156, 489 (2006).

    Article  Google Scholar 

  7. I.J.W. Ager, R.O. Ritchie, R.K. Nalla, and K.L. Breeden, J. Biomed. Opt. 10, 034012 (2005).

    Article  Google Scholar 

  8. O. Akkus, F. Adar, and M.B. Schaffler, Bone 34, 443 (2004). https://doi.org/10.1016/j.bone.2003.11.003.

    Article  Google Scholar 

  9. J. Ramasamy and O. Akkus, J. Biomech. 40, 910 (2007).

    Article  Google Scholar 

  10. S. Gamsjaeger, A. Masic, P. Roschger, et al., Bone 47, 392 (2010).

    Article  Google Scholar 

  11. A. Grey, R. Ames, R. Matthews, and I. Reid, Thorax 48, 589 (1993).

    Article  Google Scholar 

  12. A. Boskey and N. Pleshko Camacho, Biomaterials 28, 2465 (2007).

    Article  Google Scholar 

  13. A.L. Boskey, E. Donnelly, E. Boskey, L. Spevak, Y. Ma, W. Zhang, J. Lappe, and R.R. Recker, J. Bone Miner. Res. 31, 1070 (2016).

    Article  Google Scholar 

  14. S. Gourion-Arsiquaud, J.C. Burket, L.M. Havill, et al., J. Bone Miner. Res. 24, 1271 (2009).

    Article  Google Scholar 

  15. J. Burket, S. Gourion-Arsiquaud, L.M. Havill, S.P. Baker, A.L. Boskey, and M.C.H. van der Meulen, J. Biomech. 44, 277 (2011). https://doi.org/10.1016/j.jbiomech.2010.10.018.

    Article  Google Scholar 

  16. Y. Bala, B. Depalle, T. Douillard, et al., J. Mech. Behav. Biomed. Mater. 4, 1473 (2011).

    Article  Google Scholar 

  17. R. Zebaze, A.C. Jones, M.G. Pandy, M.A. Knackstedt, and E. Seeman, Bone 48, 1246 (2011).

    Article  Google Scholar 

  18. B. Achrai and H.D. Wagner, Acta Biomater. 9, 5890 (2013). https://doi.org/10.1016/j.actbio.2012.12.023.

    Article  Google Scholar 

  19. E. Donnelly, A.L. Boskey, S.P. Baker, and M.C.H. van der Meulen, J. Biomed. Mater. Res., Part A 92A, 1048 (2010). https://doi.org/10.1002/jbm.a.32442.

    Article  Google Scholar 

  20. N. Rodriguez-Florez, M.L. Oyen, and S.J. Shefelbine, J. Mech. Behav. Biomed. Mater. 18, 90 (2013). https://doi.org/10.1016/j.jmbbm.2012.11.005.

    Article  Google Scholar 

  21. K. Grover, M. Hu, L. Lin, J. Muir, and Y.-X. Qin, J. Bone Miner. Metab. 37, 1048 (2019).

    Article  Google Scholar 

  22. S. Vennin, A. Desyatova, J.A. Turner, et al., Bone 97, 233 (2017). https://doi.org/10.1016/j.bone.2017.01.031.

    Article  Google Scholar 

  23. J. Schwiedrzik, R. Raghavan, A. Bürki, et al., Nat. Mater. 13, 740 (2014).

    Article  Google Scholar 

  24. O.A. Tertuliano and J.R. Greer, Nat. Mater. 15, 1195 (2016).

    Article  Google Scholar 

  25. A. Groetsch, A. Gourrier, J. Schwiedrzik, et al., Acta Biomater. 89, 313 (2019).

    Article  Google Scholar 

  26. D. Casari, J. Michler, P. Zysset, and J. Schwiedrzik, Acta Biomater. 120, 135 (2021). https://doi.org/10.1016/j.actbio.2020.04.030.

    Article  Google Scholar 

  27. D.M. Ebenstein and L.A. Pruitt, Nano Today 1, 26 (2006). https://doi.org/10.1016/S1748-0132(06)70077-9.

    Article  Google Scholar 

  28. Z. Fan, J.G. Swadener, J.Y. Rho, M.E. Roy, and G.M. Pharr, J. Orthop. Res. 20, 806 (2002). https://doi.org/10.1016/S0736-0266(01)00186-3.

    Article  Google Scholar 

  29. W.G. Beamer, L.R. Donahue, and C.J. Rosen, J. Musculoskelet. Neuronal. Interact. 2, 225 (2002).

    Google Scholar 

  30. C.J. Rosen, W.G. Beamer, and L.R. Donahue, Osteoporos Int. 12, 803 (2001). https://doi.org/10.1007/s001980170030.

    Article  Google Scholar 

  31. K.J. Jepsen, D.E. Pennington, Y.L. Lee, M. Warman, and J. Nadeau, J. Bone Miner. Res. 16, 1854 (2001).

    Article  Google Scholar 

  32. K.J. Jepsen, O.J. Akkus, R.J. Majeska, and J.H. Nadeau, Mamm. Genome 14, 97 (2003).

    Article  Google Scholar 

  33. C. Price, B.C. Herman, T. Lufkin, H.M. Goldman, and K.J. Jepsen, J. Bone Miner. Res. 20, 1983 (2005).

    Article  Google Scholar 

  34. S.R. Kalidindi and S. Pathak, Acta Mater. 56, 3523 (2008).

    Article  Google Scholar 

  35. S. Pathak, J. Shaffer, and S.R. Kalidindi, Scripta Mater. 60, 439 (2009).

    Article  Google Scholar 

  36. B.R. Donohue, A. Ambrus, and S.R. Kalidindi, Acta Mater. 60, 3943 (2012). https://doi.org/10.1016/j.actamat.2012.03.034.

    Article  Google Scholar 

  37. J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Med. Eng. Phys. 20, 92 (1998). https://doi.org/10.1016/S1350-4533(98)00007-1.

    Article  Google Scholar 

  38. J.Y. Rho, P. Zioupos, J.D. Currey, and G.M. Pharr, Bone 25, 295 (1999). https://doi.org/10.1016/S8756-3282(99)00163-5.

    Article  Google Scholar 

  39. S. Hengsberger, J. Enstroem, F. Peyrin, and P. Zysset, J. Biomech. 36, 1503 (2003). https://doi.org/10.1016/S0021-9290(03)00131-3.

    Article  Google Scholar 

  40. M.L. Oyen, J. Biomech. 39, 2699 (2006). https://doi.org/10.1016/j.jbiomech.2005.09.011.

    Article  Google Scholar 

  41. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  42. W.C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  Google Scholar 

  43. S. Pathak, D. Stojakovic, and S.R. Kalidindi, Acta Mater. 57, 3020 (2009).

    Article  Google Scholar 

  44. S. Pathak, J. Michler, K. Wasmer, and S. Kalidindi, J. Mater. Sci. 47, 815 (2012). https://doi.org/10.1007/s10853-011-5859-z.

    Article  Google Scholar 

  45. S.J. Vachhani, C. Trujillo, N. Mara, et al., J. Dyn. Behav. Mater. 2, 511 (2016). https://doi.org/10.1007/s40870-016-0085-z.

    Article  Google Scholar 

  46. S. Pathak, Z.G. Cambaz, S.R. Kalidindi, J.G. Swadener, and Y. Gogotsi, Carbon 47, 1969 (2009).

    Article  Google Scholar 

  47. S. Pathak, S.J. Vachhani, K.J. Jepsen, H.M. Goldman, and S.R. Kalidindi, J. Mech. Behav. Biomed. Mater. 13, 102 (2012).

    Article  Google Scholar 

  48. S. Pathak, J. Gregory Swadener, S.R. Kalidindi, H.-W. Courtland, K.J. Jepsen, and H.M. Goldman, J. Mech. Behav. Biomed. Mater. 4, 34 (2011). https://doi.org/10.1016/j.jmbbm.2010.09.002.

    Article  Google Scholar 

  49. W.G. Beamer, L.R. Donahue, C.J. Rosen, and D.J. Baylink, Bone 18, 397 (1996). https://doi.org/10.1016/8756-3282(96)00047-6.

    Article  Google Scholar 

  50. K.L. Johnson, Indentation Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  51. H. Hertz, Miscellaneous Papers (New York: MacMillan and Co., Ltd., 1896).

    MATH  Google Scholar 

  52. A.C. Fischer-Cripps, Vacuum 58, 569 (2000).

    Article  Google Scholar 

  53. S.M. Basu, A. Moseson, and M.W. Barsoum, J. Mater. Res. 21, 2628 (2006). https://doi.org/10.1557/jmr.2006.0324.

    Article  Google Scholar 

  54. S. Pathak, D. Stojakovic, R. Doherty, and S.R. Kalidindi, J. Mater. Res. 24, 1142 (2009).

    Article  Google Scholar 

  55. J.G. Swadener, J.Y. Rho, and G.M. Pharr, J. Biomed. Mater. Res. 57, 108 (2001). https://doi.org/10.1002/1097-4636(200110)57:1<108::AID-JBM1148>3.0.CO;2-6.

    Article  Google Scholar 

  56. A. Carden and M.D. Morris, J. Biomed. Opt. 5, 259 (2000).

    Article  Google Scholar 

  57. J.A. Timlin, A. Carden, and M.D. Morris, Appl. Spectrosc. 53, 1429 (1999). https://doi.org/10.1366/0003702991945786.

    Article  Google Scholar 

  58. Y.N. Yeni, J. Yerramshetty, O. Akkus, C. Pechey, and C.M. Les, Calcif. Tissue Int. 78, 363 (2006). https://doi.org/10.1007/s00223-005-0301-7.

    Article  Google Scholar 

  59. A.L. Boskey, N. Pleshko, S.B. Doty, and R. Mendelsohn, Cells Mater. 2, 209 (1992).

    Google Scholar 

  60. R.G. Miller, Beyond ANOVA, Basics of Applied Statistics (Wiley, New York, 1986).

    MATH  Google Scholar 

  61. G. Schwarz, Ann. Stat. 6, 461 (1978).

    Article  Google Scholar 

  62. A.A. Neath and J.E. Cavanaugh, Wiley Interdiscip. Rev. Comput. Stat. 4, 199 (2012).

    Article  Google Scholar 

  63. H.-W. Courtland, P. Nasser, A. Goldstone, L. Spevak, A. Boskey, and K. Jepsen, Calcif. Tissue Int. 83, 342 (2008). https://doi.org/10.1007/s00223-008-9176-8.

    Article  Google Scholar 

  64. H.W. Courtland, M. Spevak, A.L. Boskey, and K.J. Jepsen, Cells Tissues Organs 189, 237 (2009).

    Article  Google Scholar 

  65. C. Huesa, M.C. Yadav, M.A. Finnilä, et al., Bone 48, 1066 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

SK and SJV acknowledge funding from ARO Grant W911NF-10-1-0409. SK acknowledges support from ONR award N00014-18-1-2879. SP acknowledges support from NSF BMMB award 1937149, and SJV acknowledges start-up support from Iowa State University during the writing of this article. The authors acknowledge Dr. Haviva Goldman and Dr. Karl Jepsen for providing the specimens used in this study, access to their laboratories for sample preparation as well as the very valuable discussions that helped shape this article. The authors also thank Dr. Phil Nasser and Dr. Hayden-William Courtland (both at Mount Sinai School of Medicine, New York, NY) for assistance with sample preparation as well as Dr. Zhorro Nikolov and Ms. Melanie Patel (Drexel University) for help with Raman measurements. The MTS XP nanoindentation system and the Renishaw 1000 Raman microspectrometer used in this study are maintained and operated by the Centralized Research Facilities in the College of Engineering at Drexel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shraddha J. Vachhani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vachhani, S.J., Kalidindi, S.R., Burr, T. et al. Lamellar Level Correlations Between Mechanical Behavior and Composition in Mouse Bone. JOM 73, 3034–3045 (2021). https://doi.org/10.1007/s11837-021-04808-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04808-6

Navigation