Skip to main content

Advertisement

Log in

Combining Bone Collagen Matrix with hUC-MSCs for Application to Alveolar Process Cleft in a Rabbit Model

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Most materials used clinically for filling severe bone defects either cannot induce bone re-generation or exhibit low bone conversion, therefore, their therapeutic effects are limited. Human umbilical cord mesenchymal stem cells (hUC-MSCs) exhibit good osteoinduction. However, the mechanism by which combining a heterogeneous bone collagen matrix with hUC-MSCs to repair the bone defects of alveolar process clefts remains unclear.

Methods

A rabbit alveolar process cleft model was established by removing the bone tissue from the left maxillary bone. Forty-eight young Japanese white rabbits (JWRs) were divided into normal, control, material and MSCs groups. An equal volume of a bone collagen matrix alone or combined with hUC-MSCs was implanted in the defect. X-ray, micro-focus computerized tomography (micro-CT), blood analysis, histochemical staining and TUNEL were used to detect the newly formed bone in the defect area at 3 and 6 months after the surgery.

Results

The bone formation rate obtained from the skull tissue in MSCs group was significantly higher than that in control group at 3 months (P < 0.01) and 6 months (P < 0.05) after the surgery. The apoptosis rate in the MSCs group was significantly higher at 3 months after the surgery (P < 0.05) and lower at 6 months after the surgery (P < 0.01) than those in the normal group.

Conclusions

Combining bone collagen matrix with hUC-MSCs promoted the new bone regeneration in the rabbit alveolar process cleft model through promoting osteoblasts formations and chondrocyte growth, and inducing type I collagen formation and BMP-2 generation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

JWRs:

Japanese white rabbits

hUC-MSCs:

Human umbilical cord mesenchymal stem cells

micro-CT:

Micro focus computerized tomography

HE:

Hematoxylin eosin

ALP:

Alkaline phosphatase

PAS:

Periodic acid-Schiff stain

IHC:

Immunohistochemical

TUNEL:

TdT-mediated dUTP nick-end Labelling

BGP:

Bone Gla protein

References

  1. Cohen, M., Figueroa, A. A., Haviv, Y., Schafer, M. E., & Aduss, H. (1991). Iliac versus cranial bone for secondary grafting of residual alveolar clefts. Plastic and Reconstructive Surgery, 87(3), 423–427.

    Article  CAS  Google Scholar 

  2. Tai, C. C., Sutherland, I. S., & McFadden, L. (2000). Prospective analysis of secondary alveolar bone grafting using computed tomography. Journal of Oral and Maxillofacial Surgery, 58(11), 1241–1249.

    Article  CAS  Google Scholar 

  3. LaRossa, D., Buchman, S., Rothkopf, D. M., Mayro, R., & Randall, P. (1995). A comparison of iliac and cranial bone in secondary grafting of alveolar clefts. Plastic and Reconstructive Surgery, 96(4), 789–797.

    Article  CAS  Google Scholar 

  4. Rosenthal, R. K., Folkman, J., & Glowacki, J. (1999). Demineralized bone implants for nonunion fracture, bone cysts, and fibous lesins. Clinical Orthopaedics and Related Research, 364, 61–69.

    Article  Google Scholar 

  5. Al-Asfour, A., Farzad, P., Andersson, L., Joseph, B., & Dahlin, C. (2014). Host tissue reactions of non-demineralized autogenic and xenogenic dentin blocks implanted in a non-osteogenic environment. An experimental study in rabbits. Dental Traumatology, 30(3), 198–203.

    Article  CAS  Google Scholar 

  6. Smith, B. T., Santoro, M., Grosfeld, E. C., Shah, S. R., van den Beucken, J. J. J. P., Jansen, J. A., & Mikos, A. G. (2017). Corporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering. Acta Biomaterialia, 50, 68–77.

    Article  CAS  Google Scholar 

  7. Liu, S., Hou, K. D., Yuan, M., Peng, J., Zhang, L., Sui, X., Zhao, B., Xu, W., Wang, A., Lu, S., & Guo, Q. (2014). Characteristics of mesenchymal stem cells derived from Wharton’s jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. Journal of Bioscience and Bioengineering, 117(2), 229–235.

    Article  CAS  Google Scholar 

  8. Tassi, S. A., Sergio, N. Z., Misawa, M. Y. O., & Villar, C. C. (2017). Efficacy of stem cells on periodontal regeneration: Systematic review of pre-clinical studies. Journal of Periodontal Research, 52(5), 793–812.

    Article  CAS  Google Scholar 

  9. Jin, Y. Z., & Lee, J. H. (2018). Mesenchymal stem cell therapy for bone regeneration. Clinics in Orthopedic Surgery, 10(3), 271–278.

    Article  Google Scholar 

  10. Hämmerle, C. H., Chiantella, G. C., Karring, T., & Lang, N. P. (1998). The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants. Clinical Oral Implants Research, 9(3), 151–162.

    Article  Google Scholar 

  11. Lee, J. S., Wikesjö, U. M., Jung, U. W., Choi, S. H., Pippig, S., Siedler, M., & Kim, C. K. (2010). Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a beta-tricalcium phosphate carrier into one-wall intrabony defects in dogs. Journal of Clinical Periodontology, 37(4), 382–389.

    Article  CAS  Google Scholar 

  12. Liu, Y., Zheng, Y., Ding, G., Fang, D., Zhang, C., Bartold, P. M., Gronthos, S., Shi, S., & Wang, S. (2008). Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells, 26(4), 1065–1073.

    Article  Google Scholar 

  13. Schmitz, J. P., & Hollinger, J. O. (1986). The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical Orthopaedics and Related Research, 205, 299–308.

    Article  Google Scholar 

  14. Gallego, L., Junquera, L., García, E., García, V., Alvarez-Viejo, M., Costilla, S., Fresno, M. F., & Meana, A. (2010). Repair of rat mandibular bone defects by alveolar osteoblasts in a novel plasma-derived albumin scaffold. Tissue Engineering Part A, 16(4), 1179–1187.

    Article  CAS  Google Scholar 

  15. Korn, P., Hauptstock, M., Range, U., Kunert-Keil, C., Pradel, W., Lauer, G., & Schulz, M. C. (2017). Application of tissue-engineered bone grafts for alveolar cleft osteoplasty in a rodent model. Clinical Oral Investigations, 21(8), 2521–2534.

    Article  Google Scholar 

  16. Jahanbin, A., Rashed, R., Alamdari, D. H., Koohestanian, N., Ezzati, A., Kazemian, M., Saghafi, S., & Raisolsadat, M. A. (2016). Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells. Journal of Oral and Maxillofacial Surgery, 74(4), 829.e1–9.

    Article  Google Scholar 

  17. Kandalam, U., Kawai, T., Ravindran, G., Brockman, R., Romero, J., Munro, M., Ortiz, J., Heidari, A., Thomas, R., Kuriakose, S., Naglieri, C., Ejtemai, S., & Kaltman, S. I. (2021). Predifferentiated gingival stem cell-induced bone regeneration in rat alveolar bone defect model. Tissue Engineering Part A, 27(5–6), 424–436.

    Article  CAS  Google Scholar 

  18. Toyota, A., Shinagawa, R., Mano, M., Tokioka, K., & Suda, N. (2021). Regeneration in experimental alveolar bone defect using human umbilical cord mesenchymal stem cells. Cell Transplantation, 30, 963689720975391.

    Article  Google Scholar 

  19. Sun, X. C., Zhang, Z. B., Wang, H., Li, J. H., Ma, X., & Xia, H. F. (2019). Comparison of three surgical models of bone tissue defects in cleft palate in rabbits. International Journal of Pediatric Otorhinolaryngology, 124, 164–172.

    Article  Google Scholar 

  20. Esteban, J. M., Ahn, C., Mehta, P., & Battifora, H. (1994). Biologic significance of quantitative estrogen receptor immunohistochemical assay by image analysis in breast cancer. American Journal of Clinical Pathology, 102(2), 158–162.

    Article  CAS  Google Scholar 

  21. Xavier, L. L., Viola, G. G., Ferraz, A. C., Da, C. C., Deonizio, J. M., Netto, C. A., & Achaval, M. (2005). A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Research. Brain Research Protocols, 16(1–3), 58–64.

    Article  CAS  Google Scholar 

  22. Zhang, L., Li, Y., Guan, C. Y., Tian, S., Lv, X. D., Li, J. H., Ma, X., & Xia, H. F. (2018). Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase. Stem Cell Research & Therapy, 9(1), 36.

    Article  CAS  Google Scholar 

  23. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Dj, P., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  Google Scholar 

  24. Gimbel, M., Ashley, R. K., Sisodia, M., Gabbay, J. S., Wasson, K. L., Heller, J., Wilson, L., Kawamoto, H. K., & Bradley, J. P. (2007). Repair of alveolar cleft defects: Reduced morbidity with bone marrow stem cells in a resorbable matrix. The Journal of craniofacial surgery, 18(4), 895–901.

    Article  Google Scholar 

  25. Xu, Y., Meng, H., Li, C., Hao, M., Wang, Y., Yu, Z., Li, Q., Han, J., Zhai, Q., & Qiu, L. (2010). Umbilical cord-derived mesenchymal stem cells isolated by a novel explantation technique can differentiate into functional endothelial cells and promote revascularization. Stem Cells and Development, 19(10), 1511–1522.

    Article  CAS  Google Scholar 

  26. Wang, N., Xiao, Z., Zhao, Y., Wang, B., Li, X., Li, J., & Dai, J. (2018). Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. Journal of Tissue Engineering and Regenerative Medicine, 12(2), e1154–e1163.

    Article  CAS  Google Scholar 

  27. Cao, F. J., & Feng, S. Q. (2009). Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury. Chinese Medical Journal (England), 122(2), 225–231.

    Google Scholar 

  28. Baksh, D., Yao, R., & Tuan, R. S. (2007). Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25(6), 1384–1392.

    Article  CAS  Google Scholar 

  29. Wang, L., Tran, I., Seshareddy, K., Weiss, M. L., & Detamore, M. S. (2009). A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Engineering Part A, 15(8), 2259–2266.

    Article  CAS  Google Scholar 

  30. Ding, D. C., Chang, Y. H., Shyu, W. C., & Lin, S. Z. (2015). Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplantation, 24(3), 339–347.

    Article  Google Scholar 

  31. De Miguel, M. P., Fuentes-Julián, S., Blázquez-Martínez, A., Pascual, C. Y., Aller, M. A., Arias, J., & Arnalich-Montiel, F. (2012). Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Current Molecular Medicine, 12(5), 574–591.

    Article  Google Scholar 

  32. Takushima, A., Kitano, Y., & Harii, K. (1998). Osteogenic potential of cultured periosteal cells in a distracted bone gap in rabbits. The Journal of Surgical Research, 78(1), 68–77.

    Article  CAS  Google Scholar 

  33. Barry, F. P., & Murphy, J. M. (2004). Mesenchymal stem cells: Clinical applications and biological characterization. The International Journal of Biochemistry & Cell Biology, 36(4), 568–584.

    Article  CAS  Google Scholar 

  34. Hollinger, J. O., Schmitt, J. M., Buck, D. C., Shannon, R., Joh, S. P., Zegzula, H. D., & Wozney, J. (1998). Recombinant human bone morphogenetic protein-2 and collagen for bone regeneration. Journal of Biomedical Materials Research, 43(4), 356–364.

    Article  CAS  Google Scholar 

  35. Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453(7193), 314–321.

    Article  CAS  Google Scholar 

  36. Kugimiya, F., Kawaguchi, H., Kamekura, S., Chikuda, H., Ohba, S., Yano, F., Ogata, N., Katagiri, T., Harada, Y., Azuma, Y., Nakamura, K., & Chung, U. I. (2005). Involvement of endogenous bone morphogenetic protein (BMP) 2 and BMP6 in bone formation. Journal of Biological Chemistry, 280(42), 35704–35712.

    Article  CAS  Google Scholar 

  37. Wang, Q., Huang, C., Xue, M., & Zhang, X. (2011). Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone, 48(3), 524–532.

    Article  CAS  Google Scholar 

  38. Tilly, J. L., Tilly, K. I., & Perez, G. I. (1997). The genes of cell death and cellular susceptibility to apoptosis in the ovary: A hypothesis. Cell Death and Differentiation, 4(3), 180–187.

    Article  CAS  Google Scholar 

  39. Takamoto, N., Leppert, P. C., & Yu, S. Y. (1998). Cell death and proliferation and its relation to collagen degradation in uterine involution of rat. Connective Tissue Research, 37(3–4), 163–175.

    Article  CAS  Google Scholar 

  40. Pellicciari, C., Bottone, M. G., Schaack, V., Barni, S., & Manfredi, A. A. (1996). Spontaneous apoptosis of thymocytes is uncoupled with progression through the cell cycle. Experimental Cell Research, 229(2), 370–377.

    Article  CAS  Google Scholar 

  41. Schlagheck, M. L., Walzik, D., Joisten, N., Koliamitra, C., Hardt, L., Metcalfe, A. J., Wahl, P., Bloch, W., Schenk, A., & Zimmer, P. (2020). Cellular immune response to acute exercise: Comparison of endurance and resistance exercise. European Journal of Haematology., 105(1), 75–84.

    Article  CAS  Google Scholar 

  42. Clyne, B., & Olshaker, J. S. (1999). The C-reactive protein. The Journal of Emergency Medicine, 17(6), 1019–1025.

    Article  CAS  Google Scholar 

  43. Su, R. C., Lad, A., Breidenbach, J. D., Kleinhenz, A. L., & Kennedy, D. J. (2020). Assessment of diagnostic biomarkers of liver injury in the setting of microcystin-lr (mc-lr) hepatotoxicity. Chemosphere, 257, 127111.

    Article  CAS  Google Scholar 

  44. StPán, J., Pilarová, T., Votrubová, O., & Melicharová, D. (1974). Serum alkaline phosphatase as indicator of the liver and bone involvement in patients treated by chronic dialysis. Casopís Lékar Ceskych, 113(31), 952–957.

    Google Scholar 

  45. Li, Y. C., Shen, J. D., Lu, S. F., Zhu, L. L., Wang, B. Y., Bai, M., & Xu, E. P. (2020). Transcriptomic analysis reveals the mechanism of sulfasalazine-induced liver injury in mice. Toxicology Letters, 321, 12–20.

    Article  CAS  Google Scholar 

  46. Kotobuki, N., Katsube, Y., Katou, Y., Tadokoro, M., Hirose, M., & Ohgushi, H. (2008). In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs). Cell Transplantation, 17(6), 705–712.

    Article  Google Scholar 

  47. An, J. H., Park, H., Song, J. A., Ki, K. H., Yang, J. Y., Choi, H. J., Cho, S. W., Kim, S. W., Kim, S. Y., Yoo, J. J., Baek, W. Y., Kim, J. E., Choi, S. J., Oh, W., & Shin, C. S. (2013). Transplantation of human umbilical cord blood-derived mesenchymal stem cells or their conditioned medium prevents bone loss in ovariectomized nude mice. Tissue Engineering Part A, 19(5–6), 685–696.

    Article  CAS  Google Scholar 

  48. Kinnaird, T., Stabile, E., Burnett, M. S., Shou, M., Lee, C. W., Barr, S., Fuchs, S., & Epstein, S. E. (2004). Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109(12), 1543–1549.

    Article  CAS  Google Scholar 

  49. Linero, I., & Chaparro, O. (2014). Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS ONE, 9(9), e107001.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the National Key Research and Development Program of China We are also very grateful to the animal experiment center of the National Research Institute for Family Planning for its meticulous care of animals.

Funding

This work was funded by grants from the National Key Research and Development Program of China (Grant No. 2016YFC1000803).

Author information

Authors and Affiliations

Authors

Contributions

XCS, XM and HFX designed the study. XCS, HW and JHL were responsible for the vivo surgery and performing the procedure. YFY and LQY provided the bone repair materials. HW and DZ were responsible for in vitro experiments. XCS, HW and HFX prepared the manuscript. XCS, HW, DZ and HFX were responsible for revising the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xu Ma or Hong-Fei Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Ethical approval to report this case was obtained from the National Research Institute for Family Planning (Ethics Number 2015-16).

Consent for Publication

All authors gave consent for publication.

Informed Consent

There are no human subjects in this article and informed consent is not applicable.

Research involving Human and Animal Rights

All procedures in this study were conducted in accordance with the National Research Institute for Family Planning (Ethics Number 2015-16) approved protocols.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, XC., Wang, H., Zhang, D. et al. Combining Bone Collagen Matrix with hUC-MSCs for Application to Alveolar Process Cleft in a Rabbit Model. Stem Cell Rev and Rep 19, 133–154 (2023). https://doi.org/10.1007/s12015-021-10221-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10221-y

Keywords

Navigation