Skip to main content

Advertisement

Log in

Pharmacological Inhibition of p38 MAPK Rejuvenates Bone Marrow Derived-Mesenchymal Stromal Cells and Boosts their Hematopoietic Stem Cell-Supportive Ability

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The therapeutic value of mesenchymal stromal cells (MSCs) for various regenerative medicine applications, including hematopoietic stem cell transplantations (HSCT), has been well-established. Owing to their small numbers in vivo, it becomes necessary to expand them in vitro, which leads to a gradual loss of their regenerative capacity. Stress-induced mitogen-activated protein kinase p38 (p38 MAPK) signaling has been shown to compromise the MSC functions. Therefore, we investigated whether pharmacological inhibition of p38 MAPK signaling rejuvenates the cultured MSCs and boosts their functionality. Indeed, we found that the ex vivo expanded MSCs show activated p38 MAPK signaling and exhibit increased oxidative stress. These MSCs show a decreased ability to secrete salutary niche factors, thereby compromising their ability to support hematopoietic stem cell (HSC) self-renewal, proliferation, and differentiation. We, therefore, attempted to rejuvenate the cultured MSCs by pharmacological inhibition of p38 MAPK – a strategy broadly known as “priming of MSCs”. We demonstrate that priming of MSCs with a p-38 MAPK inhibitor, PD169316, boosts their niche-supportive functions via upregulation of various HSC-supportive transcription factors. These primed MSCs expand multipotent HSCs having superior homing and long-term reconstitution ability. These findings shed light on the significance of non-cell-autonomous mechanisms operative in the hematopoietic niche and point towards the possible use of pharmacological compounds for rejuvenation of ex vivo cultured MSCs. Such approaches could improve the outcome of regenerative therapies involving in vitro cultured MSCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The article and its supplementary information files contain all data generated or analyzed during this study.

References

  1. Jayaraman, P., Lim, R., Ng, J., & Vemuri, M. C. (2021). Acceleration of translational mesenchymal stromal cell therapy through consistent quality GMP manufacturing. Frontiers in Cell and Developmental Biology, 9, 648472. https://doi.org/10.3389/fcell.2021.648472

    Article  PubMed  PubMed Central  Google Scholar 

  2. Budgude, P., Kale, V., & Vaidya, A. (2020). Mesenchymal stromal cell-derived extracellular vesicles as cell-free biologics for the ex vivo expansion of Hematopoietic stem cells. Cell Biology International, 44(5), 1078–1102. https://doi.org/10.1002/cbin.11313

    Article  CAS  PubMed  Google Scholar 

  3. Allan, D., Tieu, A., Lalu, M., & Burger, D. (2020). Mesenchymal stromal cell-derived extracellular vesicles for regenerative therapy and immune modulation: Progress and challenges toward clinical application. Stem Cells Translational Medicine, 9(1), 39–46. https://doi.org/10.1002/sctm.19-0114

    Article  CAS  PubMed  Google Scholar 

  4. Fajardo-Orduña, G. R., Mayani, H., & Montesinos, J. J. (2015). Hematopoietic support capacity of mesenchymal stem cells: Biology and clinical potential. Archives of Medical Research, 46(8),589–596. https://doi.org/10.1016/j.arcmed.2015.10.001

  5. Kumar, S., & Geiger, H. (2017). HSC niche biology and HSC expansion ex vivo. Trends in Molecular Medicine, 23(9), 799–819. https://doi.org/10.1016/j.molmed.2017.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. Man, Y., Yao, X., Yang, T., & Wang, Y. (2021). Hematopoietic stem cell niche during homeostasis, malignancy, and bone marrow transplantation. Frontiers in Cell and Developmental Biology, 9, 14. https://doi.org/10.3389/fcell.2021.621214

    Article  Google Scholar 

  7. Fernandez-Rebollo, E., Franzen, J., Goetzke, R., Hollmann, J., Ostrowska, A., Oliverio, M., … Wagner, W. (2020). Senescence-associated metabolomic phenotype in primary and iPSC-derived mesenchymal stromal cells. Stem cell reports, 14(2), 201–209. https://doi.org/10.1016/j.stemcr.2019.12.012

  8. Andrzejewska, A., Catar, R., Schoon, J., Qazi, T. H., Sass, F. A., Jacobi, D., … Streitz, M. (2019). Multi-parameter analysis of biobanked human bone marrow stromal cells shows little influence for donor age and mild comorbidities on phenotypic and functional properties. Frontiers in Immunology, 10, 2474. https://doi.org/10.3389/fimmu.2019.02474

  9. Yin, J. Q., Zhu, J., & Ankrum, J. A. (2019). Manufacturing of primed mesenchymal stromal cells for therapy. Nature Biomedical Engineering, 3, 90–104. https://doi.org/10.1038/s41551-018-0325-8

  10. Turinetto, V., Vitale, E., & Giachino, C. (2016). Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy. International Journal of Molecular Sciences, 17(7), 1164. https://doi.org/10.3390/ijms17071164

    Article  CAS  PubMed Central  Google Scholar 

  11. Kim, M., Kim, C., Choi, Y. S., Kim, M., Park, C., & Suh, Y. (2012). Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: Implication to age-associated bone diseases and defects. Mechanisms of Ageing and Development, 133(5), 215–225. https://doi.org/10.1016/j.mad.2012.03.014

    Article  PubMed  Google Scholar 

  12. Hu, C., Zhao, L., Peng, C., & Li, L. (2018). Regulation of the mitochondrial reactive oxygen species: Strategies to control mesenchymal stem cell fates ex vivo and in vivo. Journal of Cellular and Molecular Medicine, 22(11), 5196–5207. https://doi.org/10.1111/jcmm.13835

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nakahara, F., Borger, D. K., Wei, Q., Pinho, S., Maryanovich, M., Zahalka, A. H., … Xu, C. (2019). Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nature Cell Biology, 21(5), 560–567. https://doi.org/10.1038/s41556-019-0308-3

  14. Singh, P., Kacena, M. A., Orschell, C. M., & Pelus, L. M. (2020). Aging-related reduced expression of CXCR4 on bone marrow mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell defects. Stem Cell Reviews and Reports, 16, 684–692. https://doi.org/10.1007/s12015-020-09974-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fitzsimmons, R. E. B., Mazurek, M. S., Soos, A., & Simmons, C. A. (2018). Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells International, 2018, 1–16. https://doi.org/10.1155/2018/8031718

    Article  CAS  Google Scholar 

  16. Singh, S., Moirangthem, R. D., Vaidya, A., Jalnapurkar, S., Limaye, L., & Kale, V. (2016). AKT signaling prevailing in mesenchymal stromal cells modulates the functionality of hematopoietic stem cells via intercellular communication. Stem Cells, 34(9), 2354–2367. https://doi.org/10.1002/stem.2409

    Article  CAS  PubMed  Google Scholar 

  17. Moirangthem, R. D., Singh, S., Adsul, A., Jalnapurkar, S., Limaye, L., & Kale, V. P. (2015). Hypoxic niche-mediated regeneration of hematopoiesis in the engraftment window is dominantly affected by oxygen tension in the milieu. Stem Cells and Development, 24(20), 2423–2436. https://doi.org/10.1089/scd.2015.0112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kulkarni, R., Bajaj, M., Ghode, S., Jalnapurkar, S., Limaye, L., & Kale, V. P. (2018). Intercellular transfer of microvesicles from young mesenchymal stromal cells rejuvenates aged murine hematopoietic stem cells. Stem Cells, 36(3), 420–433. https://doi.org/10.1002/stem.2756

    Article  CAS  PubMed  Google Scholar 

  19. Jalnapurkar, S., Moirangthem, R. D., Singh, S., Limaye, L., & Kale, V. (2018). Microvesicles secreted by nitric oxide-primed mesenchymal stromal cells boost the engraftment potential of hematopoietic stem cells. Stem Cells, 37(1), 128–138. https://doi.org/10.1002/stem.2912

    Article  CAS  PubMed  Google Scholar 

  20. Maruyama, J., Naguro, I., Takeda, K., & Ichijo, H. (2009). Stress-activated MAP kinase cascades in cellular senescence. Current Medicinal Chemistry, 16(10), 1229–1235. https://doi.org/10.2174/092986709787846613

    Article  CAS  PubMed  Google Scholar 

  21. Yong, H.-Y., Koh, M.-S., & Moon, A. (2009). The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opinion on Investigational Drugs, 18(12), 1893–1905. https://doi.org/10.1517/13543780903321490

    Article  CAS  PubMed  Google Scholar 

  22. Anton, D. B., Ducati, R. G., Timmers, L. F. S. M., Laufer, S., & Goettert, M. I. (2021). A special view of what was almost forgotten: P38δ MAPK. Cancers, 13(9), 2077. https://doi.org/10.3390/cancers13092077

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., … Suda, T. (2006). Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Medicine, 12(4), 446–451. https://doi.org/10.1038/nm1388

  24. Wang, Y., Liu, L., & Zhou, D. (2011). Inhibition of p38 MAPK attenuates ionizing radiation-induced hematopoietic cell senescence and residual bone marrow injury. Radiation Research, 176(6), 743–752. https://doi.org/10.1667/rr2727.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zou, J., Zou, P., Lou, Y., Xiao, Y., Wang, J., & Liu, L. (2011). The cross-talk between ROS and p38MAPKα in the ex vivo expanded human umbilical cord blood CD133+ cells. Journal of Huazhong University of Science and Technology [Medical Sciences], 31(5), 591–595. https://doi.org/10.1007/s11596-011-0566-1

    Article  CAS  Google Scholar 

  26. Li, D., Wang, Y., Wu, H., Lu, L., Zhang, H., Chang, J., … Meng, A. (2011). Mitigation of ionizing radiation-induced bone marrow suppression by p38 inhibition and G-CSF administration. Journal of Radiation Research, 52(6), 712–716. https://doi.org/10.1269/jrr.11007

  27. Lu, L., Wang, Y. Y., Zhang, J. L., Li, D. G., & Meng, A. M. (2016). p38 MAPK inhibitor insufficiently attenuates HSC senescence administered long-term after 6 gy total body irradiation in mice. International Journal of Molecular Sciences, 17(6), 905. https://doi.org/10.3390/ijms17060905

    Article  CAS  PubMed Central  Google Scholar 

  28. Jung, H., Kim, D. O., Byun, J. E., Kim, W. S., Kim, M. J., Song, H. Y., … Choi, I. (2016). Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p38 kinase activity. Nature Communications, 7, 1–12. https://doi.org/10.1038/ncomms13674

  29. Navas, T. A., Mohindru, M., Estes, M., Ma, J. Y., Sokol, L., Pahanish, P., … Collins, R. (2006). Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood, 108(13), 4170–4177. https://doi.org/10.1182/blood-2006-05-023093

  30. Saadatzadeh, M. R., Bijangi-Vishehsaraei, K., Kapur, R., & Haneline, L. S. (2009). Distinct roles of stress-activated protein kinases in Fanconi anemia type C–deficient hematopoiesis. Blood, The Journal of the American Society of Hematology, 113(12), 2655–2660. https://doi.org/10.1182/blood-2008-09-181420

    Article  CAS  Google Scholar 

  31. Kale, V. P. (2019). Application of “primed” mesenchymal stromal cells in hematopoietic stem cell transplantation: Current status and future prospects. Stem Cells and Development, 28(22), 1473–1479. https://doi.org/10.1089/scd.2019.0149

    Article  PubMed  Google Scholar 

  32. Budgude, P., Kale, V., & Vaidya, A. (2021). Cryopreservation of mesenchymal stromal cell-derived extracellular vesicles using trehalose maintains their ability to expand hematopoietic stem cells in vitro. Cryobiology, 98, 152–163. https://doi.org/10.1016/j.cryobiol.2020.11.009

    Article  CAS  PubMed  Google Scholar 

  33. Wu, K. K. (2021). Control of mesenchymal stromal cell senescence by tryptophan metabolites. International Journal of Molecular Sciences, 22(2), 697. https://doi.org/10.3390/ijms22020697

    Article  CAS  PubMed Central  Google Scholar 

  34. Borodkina, A. V., Shatrova, A. N., Nikolsky, N. N., & Burova, E. B. (2016). The role of p38 MAP-kinase in stress-induced senescence of human endometrium-derived mesenchymal stem cells. Cell and Tissue Biology, 10(5), 365–371. https://doi.org/10.1134/S1990519X16050023

    Article  Google Scholar 

  35. Papaconstantinou, J. (2019). The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells, 8(11), 1383. https://doi.org/10.3390/cells8111383

    Article  CAS  PubMed Central  Google Scholar 

  36. Mendelson, A., & Frenette, P. S. (2014). Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nature Medicine, 20(8), 833–846. https://doi.org/10.1038/nm.3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, H., Xia, X., & Li, B. (2015). Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues. Experimental Biology and Medicine, 240(8), 1099–1106. https://doi.org/10.1177/1535370215591828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Han, L., Wang, B., Wang, R., Gong, S., Chen, G., & Xu, W. (2019). The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Research & Therapy, 10(1), 1–14. https://doi.org/10.1186/s13287-019-1498-0

    Article  CAS  Google Scholar 

  39. Pinho, S., & Frenette, P. S. (2019). Haematopoietic stem cell activity and interactions with the niche. Nature Reviews Molecular Cell Biology, 20(5), 303–320. https://doi.org/10.1038/s41580-019-0103-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ali, M. A. E., Fuse, K., Tadokoro, Y., Hoshii, T., Ueno, M., Kobayashi, M., … Hegazy, A. M. (2017). Functional dissection of hematopoietic stem cell populations with a stemness-monitoring system based on NS-GFP transgene expression. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-11909-3

  41. Peng, C., Chen, Y., Shan, Y., Zhang, H., Guo, Z., Li, D., & Li, S. (2012). LSK derived LSK–cells have a high apoptotic rate related to survival regulation of hematopoietic and leukemic stem cells. PLoS ONE, 7(6), e38614. https://doi.org/10.1371/journal.pone.0038614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Challen, G. A., Boles, N., Lin, K. K., & Goodell, M. A. (2009). Mouse hematopoietic stem cell identification and analysis. Cytometry Part A: The Journal of the International Society for Advancement of Cytometry, 75(1), 14–24. https://doi.org/10.1002/cyto.a.20674

    Article  Google Scholar 

  43. Lu, Z., Hong, C. C., Kong, G., Assumpção, A. L. F. V, Ong, I. M., Bresnick, E. H., … Pan, X. (2018). Polycomb group protein YY1 is an essential regulator of hematopoietic stem cell quiescence. Cell Reports, 22(6), 1545–1559. https://doi.org/10.1016/j.celrep.2018.01.026

  44. Jalnapurkar, S., Singh, S., Devi, M. R., Limaye, L., & Kale, V. (2016). Nitric oxide has contrasting age-dependent effects on the functionality of murine hematopoietic stem cells. Stem Cell Research and Therapy, 7, 171. https://doi.org/10.1186/s13287-016-0433-x

  45. Hock, H., Hamblen, M. J., Rooke, H. M., Schindler, J. W., Saleque, S., Fujiwara, Y., & Orkin, S. H. (2004). Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature, 431(7011), 1002–1007. https://doi.org/10.1038/nature02994

    Article  CAS  PubMed  Google Scholar 

  46. Zeng, H., Yücel, R., Kosan, C., Klein-Hitpass, L., & Möröy, T. (2004). Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. The EMBO Journal, 23(20), 4116–4125. https://doi.org/10.1038/sj.emboj.7600419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Laricchia-Robbio, L., & Nucifora, G. (2008). Significant increase of self-renewal in hematopoietic cells after forced expression of EVI1. Blood Cells, Molecules, and Diseases, 40(2), 141–147. https://doi.org/10.1016/j.bcmd.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  48. Chang, V. Y., Fang, T., Pohl, K. A., Tran, E., Himburg, H. A., & Chute, J. P. (2018). Epidermal Growth Factor Rejuvenates Aging Hematopoietic Stem Cells. Blood, 132(Supplement 1), 1284. https://doi.org/10.1182/blood-2018-99-119929

    Article  Google Scholar 

  49. Ahmadnejad, M., Amirizadeh, N., Mehrasa, R., Karkhah, A., Nikougoftar, M., & Oodi, A. (2017). Elevated expression of DNMT1 is associated with increased expansion and proliferation of hematopoietic stem cells co-cultured with human MSCs. Blood Research, 52(1), 25. https://doi.org/10.5045/br.2017.52.1.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piryani, S. O., Kam, A. Y. F., Kliassov, E. G., Chen, B. J., Spector, N. L., Chute, J. P., … Doan, P. L. (2018). Epidermal growth factor and granulocyte colony stimulating factor signaling are synergistic for hematopoietic regeneration. Stem Cells, 36(2), 252–264. https://doi.org/10.1002/stem.2731

  51. Kataoka, K., Sato, T., Yoshimi, A., Goyama, S., Tsuruta, T., Kobayashi, H., … Imai, Y. (2011). Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. Journal of Experimental Medicine, 208(12), 2403–2416. https://doi.org/10.1084/jem.20110447

  52. Ma, Z., Xu, J., Wu, L., Wang, J., Lin, Q., Chowdhury, F. A., … Du, W. (2020). Hes1 deficiency causes hematopoietic stem cell exhaustion. Stem Cells, 38(6), 756–768. https://doi.org/10.1002/stem.3169

  53. Zhu, J., & Emerson, S. G. (2002). Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene, 21(21), 3295–3313. https://doi.org/10.1038/sj.onc.1205318

    Article  CAS  PubMed  Google Scholar 

  54. Sharma, M., Afrin, F., Satija, N., Tripathi, R. P., & Gangenahalli, G. U. (2011). Stromal-derived factor-1/CXCR4 signaling: Indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells and Development, 20(6), 933–946. https://doi.org/10.1089/scd.2010.0263

    Article  CAS  PubMed  Google Scholar 

  55. Borodkina, A., Shatrova, A., Abushik, P., Nikolsky, N., & Burova, E. (2014). Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging (Albany NY), 6(6), 481. https://doi.org/10.18632/aging.100673

    Article  Google Scholar 

  56. Zhou, X., Hong, Y., Zhang, H., & Li, X. (2020). Mesenchymal stem cell senescence and rejuvenation: Current status and challenges. Frontiers in Cell and Developmental Biology, 8, 364. https://doi.org/10.3389/fcell.2020.00364

    Article  PubMed  PubMed Central  Google Scholar 

  57. Baxter, M. A., Wynn, R. F., Jowitt, S. N., Wraith, J. E., Fairbairn, L. J., & Bellantuono, I. (2004). Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 22(5), 675–682. https://doi.org/10.1634/stemcells.22-5-675

    Article  CAS  PubMed  Google Scholar 

  58. Elmansi, A. M., Hussein, K. A., Herrero, S. M., Periyasamy-Thandavan, S., Aguilar-Pérez, A., Kondrikova, G., … Kaiser, H. (2020). Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal cells. Bone Reports, 12, 100270. https://doi.org/10.1016/j.bonr.2020.100270

  59. Singh, P., Kacena, M. A., Orschell, C. M., & Pelus, L. M. (2017). Attenuation of CXCR4/SDF-1 axis in bone marrow mesenchymal stromal cells impairs hematopoietic niche activity and promotes stem cell aging. Blood, 130(Supplement 1), 92. https://doi.org/10.1182/blood.V130.Suppl_1.92.92

    Article  Google Scholar 

  60. Singh, P., Mohammad, K. S., & Pelus, L. M. (2020). CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation. Stem Cells, 38(7), 849–859. https://doi.org/10.1002/stem.3174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shao, H., Xu, Q., Wu, Q., Ma, Q., Salgueiro, L., Wang, J., … Yu, H. (2011). Defective CXCR4 expression in aged bone marrow cells impairs vascular regeneration. Journal of Cellular and Molecular Medicine, 15(10), 2046–2056. https://doi.org/10.1111/j.1582-4934.2010.01231.x

  62. Li, H., Hao, L., Li, Y., & Wang, R. (2018). Reducing CXCR4 resulted in impairing proliferation and promoting aging. The Journal of Nutrition, Health & Aging, 22(7), 785–789. https://doi.org/10.1007/s12603-018-1013-9

    Article  CAS  Google Scholar 

  63. Alicka, M., Kornicka-Garbowska, K., Kucharczyk, K., Kępska, M., Rӧcken, M., & Marycz, K. (2020). Age-dependent impairment of adipose-derived stem cells isolated from horses. Stem Cell Research & Therapy, 11(1), 1–20. https://doi.org/10.1186/s13287-019-1512-6

    Article  CAS  Google Scholar 

  64. Li, J., Zuo, B., Zhang, L., Dai, L., & Zhang, X. (2018). Osteoblast versus adipocyte: Bone marrow microenvironment-guided epigenetic control. Case Reports in Orthopedic Research, 1(1), 2–18. https://doi.org/10.1159/000489053

    Article  Google Scholar 

  65. Perucca, S., Di Palma, A., Piccaluga, P. P., Gemelli, C., Zoratti, E., Bassi, G., … Russo, D. (2017). Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells). PLoS ONE, 12(2), e0172430. https://doi.org/10.1371/journal.pone.0172430

  66. Klamer, S. E., Dorland, Y. L., Kleijer, M., Geerts, D., Lento, W. E., van der Schoot, C. E., … Voermans, C. (2018). TGFBI expressed by bone marrow niche cells and hematopoietic stem and progenitor cells regulates hematopoiesis. Stem Cells and Development, 27(21), 1494–1506. https://doi.org/10.1089/scd.2018.0124

  67. Frenette, P. S., Pinho, S., Lucas, D., & Scheiermann, C. (2013). Mesenchymal stem cell: Keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annual Review of Immunology, 31, 285–316. https://doi.org/10.1146/annurev-immunol-032712-095919

    Article  PubMed  Google Scholar 

  68. Coulthard, L. R., White, D. E., Jones, D. L., McDermott, M. F., & Burchill, S. A. (2009). p38MAPK: Stress responses from molecular mechanisms to therapeutics. Trends in Molecular Medicine, 15(8), 369–379. https://doi.org/10.1016/j.molmed.2009.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leestemaker, Y., de Jong, A., Witting, K. F., Penning, R., Schuurman, K., Rodenko, B., … Heck, A. J. R. (2017). Proteasome activation by small molecules. Cell Chemical Biology, 24(6), 725–736. https://doi.org/10.1016/j.chembiol.2017.05.010

  70. Zhang, Z., Wang, B., Wu, S., Wen, Y., Wang, X., Song, X., … Chen, W. (2017). PD169316, a specific p38 inhibitor, shows antiviral activity against Enterovirus71. Virology, 508, 150–158. https://doi.org/10.1016/j.virol.2017.05.012

Download references

Acknowledgements

The authors wish to thank Symbiosis Centre for Research & Innovation, Symbiosis International (Deemed University) for providing infrastructural support.

Funding

This study was funded by Department of Biotechnology (DBT), Ministry of Science & Technology, New Delhi, Government of India. P.B. was provided with Junior Research Fellowship (JRF) by DBT under this project (No.BT/PR23620/MED/31/368/2017).

Author information

Authors and Affiliations

Authors

Contributions

Pallavi Budgude: Investigation, Validation, Formal Analysis, Writing – original draft preparation; Vaijayanti Kale: Conceptualization, Methodology, Formal Analysis, Reviewing & Editing; Anuradha Vaidya: Conceptualization, Visualization, Methodology, Formal Analysis, Resources, Writing—Reviewing & Editing, Supervision, Project Administration, Funding Acquisition.

Corresponding author

Correspondence to Anuradha Vaidya.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Approval

All the animal experiments were reviewed and approved by the Institutional Animal Ethics Committee (IAEC) of the Symbiosis School of Biological Sciences (SSBS) (Approval Number: SSBS/IAEC/09–2016).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12015_2021_10240_MOESM1_ESM.pdf

Supplementary file1 (PDF 1853 KB) Fig. S1: (A) The graph depicts the quantification of native p38 MAPK and p-p38 MAPK in naïve and primed MSCs as determined by densitometry of bands obtained in the blots. (B) The bar represents the ratio of phosphorylated p38 MAPK to native p38 MAPK protein. (C) The graph depicts percent cell viability of MSCs after treatment with DMSO and 10µM PD169316 for 24 and 48h, respectively (n=3). (D) A representative phase contrast image showing the morphology of ex vivo expanded MSCs when treated with DMSO and 10µM PD169316 for 24 and 48h. (10X magnification, scale = 20µm). (E) The frequency of DCF+ cells and (F) Mean Fluorescence Intensity (MFI) of DCF was measured using flow cytometry to determine the levels of intracellular ROS in naïve and primed MSCs. The data are represented as mean ± SD. ***p≤0.001

12015_2021_10240_MOESM2_ESM.pdf

Supplementary file2 (PDF 2173 KB) Fig. S2: Phase contrast images showing the ex vivo expansion of HSCs when they were co-cultured with (A) naïve and (B) primed MSCs (10X magnification), respectively. (C) The graph represents the total number of nucleated cells (TNCs) (n=25). (D-F) Flow panels depicting the frequency of HSC subsets such as (D) Lin- (upper panel), (E) LSK (middle panel), (F) LT-HSC and ST-HSC (lower panel) in HSCs co-cultured with naïve and primed MSCs. (G-I) Graphs depict the absolute numbers of (G) Lin-, (H) LSK, (I) LT-HSCs and ST-HSCs subsets in HSCs co-cultured with naïve and primed MSCs. The absolute number of each HSC subset was calculated from the total hematopoietic output and the percentage obtained in flow cytometry analysis (n=4). The data are represented as mean ± SD. * p≤0.05, ** p≤0.01, ***p≤0.001

12015_2021_10240_MOESM3_ESM.pdf

Supplementary file3 (PDF 329 KB) Fig. S3: Gating strategy used to determine the different HSC progenitors by flow cytometry is shown

12015_2021_10240_MOESM4_ESM.pdf

Supplementary file4 (PDF 541 KB) Fig. S4: (A-D) Flow panels depicting the frequency of HSC progenitors such as (A-B) CLPs (left panels) and (C-D) CMP, GMP and MEP (middle panels) in HSCs co-cultured with naïve and primed MSCs. (E-F) Flow panels depicting the frequency of CXCR4+ cells in naïve and primed LSK HSCs (right panels).

Supplementary file5 (XLSX 15 KB)

Supplementary file6 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budgude, P., Kale, V. & Vaidya, A. Pharmacological Inhibition of p38 MAPK Rejuvenates Bone Marrow Derived-Mesenchymal Stromal Cells and Boosts their Hematopoietic Stem Cell-Supportive Ability. Stem Cell Rev and Rep 17, 2210–2222 (2021). https://doi.org/10.1007/s12015-021-10240-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10240-9

Keywords

Navigation