Skip to main content
Log in

Synthesis, Crystal Structure, and Thermophysical Properties of ZrTiO4 Nanoceramics

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Inconsistencies between ZrO2–TiO2 phase diagrams with regard to structure and phase field of the zirconium titanate existence especially in a low-temperature range motivate a detailed study of its formation. Here, nanocrystals of ZrTiO4 with scrutinyite (α-PbO2) structure were successfully synthesized by co-precipitation followed by calcination in air. The phase formation was examined in the temperature range of 25–1100°C using simultaneous thermal analysis, high-temperature diffraction, and microscopy. The crystallization of ZrTiO4 was established to occur above 700°C after complete water removal. Then nanoceramics based on ZrTiO4 were obtained via sintering of nanopowder at 1200°C for 5 h and were analyzed for thermophysical performance using laser flash analysis and thermomechanical analysis. Resulting ceramics show advanced thermal insulating properties (α = 0.138–0.187 mm2/s, λ = 5.446–11.512 W/(m K)) and low thermal expansion coefficient (CTE = (3.45–7.38) × 10–6 K–1) in the temperature range of 25–800°C which makes it promising as material for thermal barrier coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. P. Simonenko, N. P. Simonenko, G. P. Kopitsa, A. S. Mokrushin, T. V. Khamova, S. V. Sizova, M. Khaddazh, N. V. Tsvigun, V. Pipich, Y. E. Gorshkova, V. G. Sevastyanov, and N. T. Kuznetsov, Mater. Chem. Phys. 225, 347 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.102

    Article  CAS  Google Scholar 

  2. A. Sotto, J. Kim, J. M. Arsuaga, G. Del Rosario, A. Martínez, D. Nam, P. Luis, and B. van der Bruggen, J. Mater. Chem. A 2, 7054 (2014). https://doi.org/10.1039/c3ta15347a

    Article  CAS  Google Scholar 

  3. M. Bram, K. Brands, T. Demeusy, L. Zhao, W. A. Meulenberg, J. Pauls, G. Göttlicher, K. V. Peinemann, S. Smart, H. P. Buchkremer, and D. Stöver, J. Greenhouse Gas Control 5, 37 (2011). https://doi.org/10.1016/j.ijggc.2010.08.003

    Article  CAS  Google Scholar 

  4. U. Aust, S. Benfer, M. Dietze, A. Rost, and G. Tomandl, J. Membr. Sci. 281, 463 (2006). https://doi.org/10.1016/j.memsci.2006.04.016

    Article  CAS  Google Scholar 

  5. E. Hernández-Ramírez, J. A. Wang, L. F. Chen, M. A. Valenzuela, and A. K. Dalai, Appl. Surf. Sci. 399, 77 (2017). https://doi.org/10.1016/j.apsusc.2016.12.068

    Article  CAS  Google Scholar 

  6. S. Liu, Z. Xiu, J. Pan, X. Cui, W. Yu, and J. Yu, J. Alloys Compd. 437, L1 (2007). https://doi.org/10.1016/j.jallcom.2006.07.075

    Article  CAS  Google Scholar 

  7. B.-F. Gao, Y. Ma, Y.-A. Cao, Z.-J. Gu, G.-J. Zhang, and J.-N. Yao, Chin. J. Chem. 25, 484 (2007). https://doi.org/10.1002/cjoc.200790091

    Article  CAS  Google Scholar 

  8. V. S. Anitha, S. Sujatha Lekshmy, and K. Joy, J. Mater. Sci. Mater. Electron. 28, 10541 (2017). https://doi.org/10.1007/s10854-017-6828-3

    Article  CAS  Google Scholar 

  9. V. Polliotto, E. Albanese, S. Livraghi, P. Indyka, Z. Sojka, G. Pacchioni, and E. Giamello, J. Phys. Chem. C 121, 5487 (2017). https://doi.org/10.1021/acs.jpcc.6b12892

    Article  CAS  Google Scholar 

  10. L. Liang, Y. Sheng, Y. Xu, D. Wu, and Y. Sun 515, 7765 (2007). https://doi.org/10.1016/j.tsf.2007.03.142

  11. T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Rüssel, and I. Avramov, Cryst. Growth Des. 12, 1556 (2012).https://doi.org/10.1021/cg2016148

    Article  CAS  Google Scholar 

  12. A. Sangeetha, Chikkahanumantharayappa, and B. M. Nagabhushana, J. Mol. Struct. 1179, 126 (2019). https://doi.org/10.1016/j.molstruc.2018.10.059

    Article  CAS  Google Scholar 

  13. V. Polliotto, E. Albanese, S. Livraghi, S. Agnoli, G. Pacchioni, and E. Giamello, Catal. Today 340, 49 (2020). https://doi.org/10.1016/j.cattod.2018.09.026

    Article  CAS  Google Scholar 

  14. S. Verma, S. Rani, S. Kumar, and M. A. M. Khan, Ceram. Int. 44, 1653 (2018).https://doi.org/10.1016/j.ceramint.2017.10.090

    Article  CAS  Google Scholar 

  15. M. Mozafari, E. Salahinejad, V. Shabafrooz, M. Yazdimamaghani, D. Vashaee, and L. Tayebi, Int. J. Nanomed. 8, 1665 (2013). https://doi.org/10.2147/IJN.S42659

    Article  CAS  Google Scholar 

  16. E. Salahinejad, M. J. Hadianfard, D. D. Macdonald, M. Mozafari, D. Vashaee, and L. Tayebi, Mater. Lett. 97, 162 (2013). https://doi.org/10.1016/j.matlet.2013.01.111

    Article  CAS  Google Scholar 

  17. Y. K. Kim and H. M. Jang, Solid State Commun. 127, 433 (2003). https://doi.org/10.1016/S0038-1098(03)00463-0

    Article  CAS  Google Scholar 

  18. Y. H. Wu, C. C. Lin, L. L. Chen, B. Y. Chen, M. L. Wu, and J. R. Wu, Appl. Phys. Lett. 96, 2008 (2010). https://doi.org/10.1063/1.3377914

    Article  CAS  Google Scholar 

  19. E. López-López, J. P. Erauw, R. Moreno, F. Cambier, and C. Baudín, J. Eur. Ceram. Soc. 33, 3195 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.06.026

    Article  CAS  Google Scholar 

  20. L. Y. Zhu, D. Xu, G. Yu, and X. Q. Wang, J. Sol-Gel Sci. Technol. 49, 341 (2009). https://doi.org/10.1007/s10971-008-1877-y

    Article  CAS  Google Scholar 

  21. V. S. Raghuwanshi, C. Rüssel, and A. Hoell, Cryst. Growth Des. 14, 2838 (2014). https://doi.org/10.1021/cg5001232

    Article  CAS  Google Scholar 

  22. C. H. Hsu, C. F. Tseng, C. H. Lai, H. H. Tung, and S. Y. Lin, Mater. Sci. Eng. B 175, 181 (2010). https://doi.org/10.1016/j.mseb.2010.07.010

    Article  CAS  Google Scholar 

  23. H.-F. Zhang, M. Zhang, S.-P. Ruan, F.-X. Meng, C.‑H. Feng, Y. Xu, W.-Y. Chen, and X.-D. Zhang, Chem. J. Chin. Univ. 32, 1785 (2019). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  24. I. C. Cosentino, E. N. S. Muccillo, F. M. Vichi, and R. Muccillo, Adv. Sci. Technol. 45, 1803 (2006). https://doi.org/10.4028/www.scientific.net/ast.45.1803

  25. S. Rengakuji, Y. Nakamura, and Y. Hara, Electrochemistry 69, 764 (2001). https://doi.org/10.5796/electrochemistry.69.764

    Article  CAS  Google Scholar 

  26. E. López-López, R. Moreno, and C. Baudín, Bol. Soc. Esp. Ceram. Vidr. 50, 169 (2011). https://doi.org/10.3989/cyv.222011

    Article  CAS  Google Scholar 

  27. A. Gajović, A. Šantić, I. Djerdj, N. Tomašić, A. Moguš-Milanković, and D. S. Su, J. Alloys Compd. 479, 525 (2009). https://doi.org/10.1016/j.jallcom.2008.12.123

    Article  CAS  Google Scholar 

  28. I. C. Cosentino, E. N. S. Muccillo, and R. Muccillo, Bull. Chem. 96, 677 (2003). https://doi.org/10.1016/j.snb.2003.07.013

    Article  CAS  Google Scholar 

  29. Y. Xia, J. Mou, G. Deng, S. Wan, K. Tieu, H. Zhu, and Q. Xue, Ceram. Int. 46, 775 (2020). https://doi.org/10.1016/j.ceramint.2019.09.032

    Article  CAS  Google Scholar 

  30. H. Ikawa, A. Iwai, K. Hiruta, H. Shimojima, K. Urabe, and S. Udagawa, J. Am. Ceram. Soc. 71, 120 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05827.x

    Article  CAS  Google Scholar 

  31. E. López-López, C. Baudín, R. Moreno, I. Santacruz, L. Leon-Reina, and M. A. G. Aranda, J. Eur. Ceram. Soc. 32, 299 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.08.004

    Article  CAS  Google Scholar 

  32. H. v. Wartenberg, W. Gurr, Zeitschr. Anorg. Allgem. Chem. 196, 374 (1931).

    Article  Google Scholar 

  33. H. G. Sowman and A. Andrews, J. Am. Ceram. Soc. 34, 298 (1951).

    Article  CAS  Google Scholar 

  34. F. H. Brown and P. Duwez, J. Am. Ceram. Soc. 37, 129 (1954).

    Article  CAS  Google Scholar 

  35. W. Coughanour, R. S. Roth, and V. A. Deprosse, J. Res. Natl. Bur. Stand. 52, 37 (1954).

    Article  CAS  Google Scholar 

  36. A. E. McHale and R. S. Roth, J. Am. Ceram. Soc. 69, 827 (1986).

    Article  CAS  Google Scholar 

  37. U. Troitzsch and D. J. Ellis, J. Mater. Sci. 40, 4571 (2005). https://doi.org/10.1007/s10853-005-1116-7

    Article  CAS  Google Scholar 

  38. I. Saenko, M. Ilatovskaia, G. Savinykh, and O. Fabrichnaya, J. Am. Ceram. Soc. 101, 386 (2018). https://doi.org/10.1111/jace.15176

    Article  CAS  Google Scholar 

  39. E. Salahinejad, M. J. Hadianfard, D. Vashaee, and L. Tayebi, J. Alloys Compd. 589, 182 (2014). https://doi.org/10.1016/j.jallcom.2013.11.178

    Article  CAS  Google Scholar 

  40. A. K. Vasilevskaya and O. V. Almjasheva, Nanosyst. Phys., Chem. Math. 3, 75 (2012).

    Google Scholar 

  41. J. A. Cape, and G. W. Lehman, J. Appl. Phys. 34, 1909 (1963).

    Article  Google Scholar 

  42. O. Y. Kurapova, A. G. Glukharev, A. S. Borisova, S. N. Golubev, and V. G. Konakov, Mater. Chem. Phys. 242 (2020). https://doi.org/10.1016/j.matchemphys.2019.122547

  43. A. Vasilevskaya, O. V. Almjasheva, and V. V. Gusarov, J. Nanopart. Res. 18, (2016). https://doi.org/10.1007/s11051-016-3494-y

  44. A. K. Vasilevskaia, V. I. Popkov, A. A. Valeeva, and A. A. Rempel, Russ. J. Appl. Chem. 89, 1211 (2016). https://doi.org/10.1134/S1070427216080012

    Article  CAS  Google Scholar 

  45. G. Bayer, M. Hofmann, and L. J. Gauckler, J. Am. Ceram. Soc. 74, 2205 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb08285.x

    Article  CAS  Google Scholar 

  46. Y. Wang and C. Zhou, Ceram. Int. 42, 13047 (2016). https://doi.org/10.1016/j.ceramint.2016.05.084

    Article  CAS  Google Scholar 

  47. J. Hostaša, W. Pabst, and J. Matějíček, J. Am. Ceram. Soc. 94, 4404 (2011). https://doi.org/10.1111/j.1551-2916.2011.04875.x

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.V. Gusarov for his attention to the study, assistance in the interpretation of the results, and active discussions. The study was partially performed on the equipment of the Engineering Center of St. Petersburg State Institute of Technology. The authors are also grateful to E.S. Motaylo for the part of this study relate to LFA including measurements and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bachina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachina, A.K., Almjasheva, O.V., Danilovich, D.P. et al. Synthesis, Crystal Structure, and Thermophysical Properties of ZrTiO4 Nanoceramics. Russ. J. Phys. Chem. 95, 1529–1536 (2021). https://doi.org/10.1134/S0036024421080057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421080057

Keywords:

Navigation