Skip to main content
Log in

Modeling the Dynamics of Secondary Photoreactions

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A system of equations is obtained for describing the dynamics of the secondary photoreaction of two-level molecules emitting spontaneous fluorescence at initial excitation of one of them. The system is derived using the Schrödinger equation for the compound system of a reagent molecule, a reaction product molecule, and a quantized radiation field. Unlike those commonly used in similar modeling, optical Bloch equations describing the dynamics of a non-selective (collective) population of the ground states of two molecules (i.e., the total number of molecules of a pair in their ground states), the system of equations (and its generalization allowing for the longitudinal and transverse relaxation of excited states of molecules) allows estimates of the relative number of reagent molecules and the product in their ground states, the use of which provides a complete idea of the effectiveness of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  2. R. O. Esquivel, J. C. Angulo, J. S. Dehesa, et al., Recent Advances Toward the Nascent Science of Quantum Information Chemistry in Information Theory: New Research, Ed. by P. Deloumeaux and J. D. Gorzalka (Nova Science, New York, 2012), Chap. 8, p. 297.

    Google Scholar 

  3. M. Molina-Espíritu, R. O. Esquivel, and S. López-Rosa, J. Chem. Theory Comput. 11, 5144 (2015).

    Article  Google Scholar 

  4. T. A. C. Maiolo, F. Della Sala, L. Martina, and G. Soliani, Theor. Math. Phys. 152, 1146 (2007).

    Article  CAS  Google Scholar 

  5. I. S. Osad’ko, Selective Spectroscopy of Single Molecules (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  6. L. A. Gribov and V. I. Baranov, Theory and Methods of Calculation of Molecular Processes: Spectra, Chemical Transformations, and Molecular Logic (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  7. F. Kaempffer, Concepts in Quantum Mechanics (Academic, New York, 1965).

    Google Scholar 

  8. M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).

    Article  CAS  Google Scholar 

  9. J. D. Macomber, Dynamics of Spectroscopic Transitions (Wiley, New York, 1976).

    Google Scholar 

  10. S. Das and G. S. Agarwal, J. Phys. B: At. Mol. Opt. Phys. 42, 141003 (2009).

    Article  Google Scholar 

  11. E. K. Bashkirov, Int. J. Theor. Phys. 58, 2346 (2019).

    Article  Google Scholar 

  12. W. Heitler, The Quantum Theory of Radiation (Dover, New York, 2010).

    Google Scholar 

  13. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ., Cambridge, 1997).

    Book  Google Scholar 

  14. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 2012).

    Book  Google Scholar 

  15. F. Pokorny, Chi. Zhang, G. Higgins, et al., Phys. Rev. Lett. 124, 080401 (2020).

    Article  CAS  Google Scholar 

  16. A. M. Basharov and E. A. Manykin, Opt. Spectrosc. 96, 81 (2004).

    Article  CAS  Google Scholar 

  17. V. A. Morozov, in Proceedings of the 32nd Symposium on Modern Chemical Physics, Tuapse, Sept. 19–28, 2020, p. 147.

  18. V. I. Baranov, L. A. Gribov, I. V. Mikhailov, and N. I. Poteshnaya, High Energy Chem. 48, 30 (2014).

    Article  CAS  Google Scholar 

  19. V. I. Baranov, L. A. Gribov, V. E. Dridger, M. Kh. Iskhakov, and I. V. Mikhailov, High Energy Chem. 43, 489 (2009).

    Article  CAS  Google Scholar 

  20. V. I. Baranov, L. A. Gribov, and I. V. Mikhailov, High Energy Chem. 51, 433 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Morozov.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, V.A. Modeling the Dynamics of Secondary Photoreactions. Russ. J. Phys. Chem. 95, 1735–1744 (2021). https://doi.org/10.1134/S0036024421080203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421080203

Keyword:

Navigation