Skip to main content
Log in

Sorption of Caffeic Acid on Pyrogenic Alumina from Aqueous Solutions

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Comprehensive adsorption and spectral studies are performed for the interaction between caffeic acid and pyrogenic alumina in aqueous solutions. It is shown that sorption begins at pH >2.5 and reaches its maximum values in a neutral medium. The sorption isotherm of caffeic acid is the H-type isotherm characteristic of chemisorption. It is found that adsorption proceeds according to two mechanisms simultaneously: due to interaction between the surface groups of the sorbent and (a) the carboxyl group of caffeic acid or (b) the ortho-hydroxyl group of the acid to form a chelate complex, the relative fraction of which grows along with the pH of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Toma, G. M. Sa, and L. S. Niculescu, et al., BioFactors 43, 685 (2017).

    Article  CAS  Google Scholar 

  2. M. Asano and H. Iwahashi, Molecules 19, 12486 (2014).

    Article  Google Scholar 

  3. C. Y. Chao, M. C. Mong, K. C. Chan, and M. C. Yin, Mol. Nutr. Food Res. 54, 388 (2010).

    Article  CAS  Google Scholar 

  4. R. I. Lukashov, D. V. Moiseev, V. N. Stolyarova, and M. N. Makarenko, Vestn. Farm. 57 (3), 61 (2012).

    Google Scholar 

  5. A. Gokcimen, A. Cim, H. T. Tola, et al., Hum. Exp. Toxicol. 26, 519 (2007).

    Article  CAS  Google Scholar 

  6. M. Moritz and M. Geszke-Moritz, Mater. Sci. Eng. C 61, 411 (2016).

    Article  CAS  Google Scholar 

  7. E. A. Shil’ko, V. V. Milevskaya, Z. A. Temerdashev, and N. V. Kiseleva, Anal. Kontrol’ 22, 303 (2018). https://doi.org/10.15826/analitika.2018.22.3.013

    Article  Google Scholar 

  8. A. Valero-Navarro, M. Gómez-Romero, J. F. Fernández-Sanchez, et al., J. Chromatogr., A 1218, 7289 (2011).

    Article  CAS  Google Scholar 

  9. D. Simanaviciute, R. Klimaviciute, and R. Rutkaite, Int. J. Biol. Macromol. 95, 788 (2017).

    Article  CAS  Google Scholar 

  10. A. Beneduci, E. Furia, N. Russo, and T. Marino, New J. Chem. 41, 5182 (2017).

    Article  CAS  Google Scholar 

  11. C. Lapouge and J. P. Cornard, ChemPhysChem 8, 473 (2007).

    Article  CAS  Google Scholar 

  12. T. I. Tikhomirova, S. S. Kubyshev, and A. V. Ivanov, Russ. J. Phys. Chem. A 87, 1357 (2013). https://doi.org/10.1134/S0036024413070327

    Article  CAS  Google Scholar 

  13. T. I. Tikhomirova, S. S. Kubyshev, A. V. Ivanov, and P. N. Nesterenko, Russ. J. Phys. Chem. A 83, 1208 (2009).

    Article  CAS  Google Scholar 

  14. L. Jiang and L. Gao, Mater. Chem. Phys. 80, 157 (2003).

    Article  CAS  Google Scholar 

  15. N. A. Lipkovskaya and V. N. Barvinchenko, Colloid J. 81, 411 (2019). https://doi.org/10.1134/S0023291219040086

    Article  CAS  Google Scholar 

  16. V. N. Barvinchenko and N. A. Lipkovskaya, Russ. J. Phys. Chem. A 93, 2383 (2019). https://doi.org/10.1134/S0044453719120033

    Article  CAS  Google Scholar 

  17. I. Ya. Bernshtein and Yu. L. Kaminskii, Spectrophotometric Analysis in Organic Chemistry (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  18. P. W. Linder, Polyhedron 6, 53 (1987).

    Article  CAS  Google Scholar 

  19. E. Tombácz and M. Szekeres, Langmuir 17, 1411 (2001).

    Article  Google Scholar 

  20. E. Tombácz, M. Szekeres, and E. Klumpp, Langmuir 17, 1420 (2001).

    Article  Google Scholar 

  21. J. P. Cornard and C. Lapouge, J. Phys. Chem. A 108, 4470 (2004).

    Article  CAS  Google Scholar 

  22. J. P. Cornard and C. Lapouge, J. Phys. Chem. A 110, 7159 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Lipkovskaya.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipkovskaya, N.A., Barvinchenko, V.N. Sorption of Caffeic Acid on Pyrogenic Alumina from Aqueous Solutions. Russ. J. Phys. Chem. 95, 1693–1697 (2021). https://doi.org/10.1134/S0036024421080173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421080173

Keywords:

Navigation