Skip to main content
Log in

Role of an Inorganic Phosphate in the Photogeneration of Hydrogen Peroxide in Aqueous Solutions of Adenine Derivatives at 77 K

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A comparative study is performed of the effect an inorganic phosphate (Pi) has on the formation of hydrogen peroxide in aqueous solutions of 2 × 10−4 M adenine derivatives (AX), such as adenine, adenosine, and adenosine-5'-diphosphate, irradiated at 77 K by near-UV in the wavelength range λ = 260–400 and 290–460 nm. It is found that the yield of H2O2 in irradiated samples grows upon adding 5 × 10−4 M Pi. The yield of H2O2 is normally increased in the presence of NaCl, while a tenfold increase in [Pi] results in only a moderate rise in [H2O2]. It is shown that the effect irradiation has on the yield of H2O2 depends on both AX and the [NaCl] and [Pi] ratio. The obtained data are compared to the results from measuring the EPR spectra of irradiated solutions before defrosting. Possible mechanisms of photoinitiated processes of H2O2 formation in the studied systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. T. A. Lozinova, A. V. Lobanov, and A. V. Lander, Russ. J. Phys. Chem. A 89, 1492 (2015).

    Article  CAS  Google Scholar 

  2. T. A. Lozinova, A. V. Lobanov, and A. V. Lander, Russ. J. Phys. Chem. A 90, 2297 (2016).

    Article  CAS  Google Scholar 

  3. T. A. Lozinova, A. V. Lobanov, and A. V. Lander, Russ. J. Phys. Chem. A 91, 2466 (2017).

    Article  CAS  Google Scholar 

  4. T. A. Lozinova, A. V. Lobanov, and A. V. Lander, Russ. J. Phys. Chem. A 92, 2065 (2018).

    Article  CAS  Google Scholar 

  5. T. A. Lozinova, A. V. Lobanov, and A. V. Lander, Russ. J. Phys. Chem. A 93, 958 (2019).

    Article  CAS  Google Scholar 

  6. T. A. Lozinova, A. V. Lobanov, A. V. Lander, and O. N. Brzhevskaya, Russ. J. Phys. Chem. A 94, 433 (2020).

    Article  CAS  Google Scholar 

  7. T. A. Lozinova and A. V. Lander, Russ. J. Phys. Chem. A 88, 163 (2014).

    Article  CAS  Google Scholar 

  8. T. A. Lozinova and A. V. Lander, Biophysics 58, 341 (2013).

    Article  CAS  Google Scholar 

  9. A. V. Lobanov, N. A. Rubtsova, Yu. A. Vedeneeva, and G. G. Komissarov, Dokl. Chem. 421, 190 (2008).

    Article  CAS  Google Scholar 

  10. V. I. Lobyshev, Ross. Khim. Zh. 51 (1), 107 (2007).

    CAS  Google Scholar 

  11. V. Kleinwachter, Collection Czechoslov. Chem. Commun. 37, 1622 (1972).

    Article  CAS  Google Scholar 

  12. Physico-Chemical Properties of Nucleic Acids, Ed. by J. Duchesne (Academic, London, 1973), p. 119.

    Google Scholar 

  13. E. Szajdzinska-Pietek, J. Bednarek, A. Plonka, et al., Res. Chem. Intermed. 27, 937 (2001).

    Article  CAS  Google Scholar 

  14. D. A. Beshnova, A. O. Lantushenko, D. B. Davies, and M. P. Evstigneev, J. Chem. Phys. 130, 165105 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. K. H. Scheller, F. Hofstetter, P. R. Mitchell, et al., J. Am. Chem. Soc. 103, 247 (1981).

    Article  CAS  Google Scholar 

  16. J. Morcillo, E. Gallego, and F. Peral, J. Mol. Struct. 157, 353 (1987).

    Article  CAS  Google Scholar 

  17. D. E. Metzler, Biochemistry (Academic, New York, 1977).

    Google Scholar 

  18. O. N. Brzhevskaya, E. N. Degtyarev, P. P. Levin, T. A. Lozinova, and O. S. Nedelina, Dokl. Biochem. Biophys. 405, 395 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Short Chemical Encyclopedy, Ed. by I. L. Knunyants, G. Ya. Bakharovskaya, and A. I. Busev (Sov. Entsiklopediya, Moscow, 1961), Vol. 31, p. 31 [in Russian].

    Google Scholar 

  20. W. Saenger, Principles of Nucleic Acid Structure (Springer, New York, 1984).

    Book  Google Scholar 

  21. D. T. Browne, J. Eisinger, and N. J. Leonard, J. Am. Chem. Soc. 90, 7302 (1968).

    Article  CAS  PubMed  Google Scholar 

  22. A. Banyasz, I. Vaya, P. Changenet-Barret, et al., J. Am. Chem. Soc. 133, 5163 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. F. Peral and E. Gallego, Biophys. Chem. 85, 79 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. K. E. van Holde and G. P. Rossetti, Biochemistry 6, 2189 (1967).

    Article  CAS  PubMed  Google Scholar 

  25. T. A. Lozinova, Cand. Sci. (Math. Phys.) Dissertation (Mosc. State Univ., Moscow, 1989).

  26. J. A. Ghormley and C. J. Hochanadel, J. Phys. Chem. 75, 40 (1971).

    Article  CAS  Google Scholar 

  27. U. K. Kläning and T. Wolff, Ber. Bunsen-Ges. Phys. Chem. 89, 243 (1985).

    Article  Google Scholar 

  28. C. V. Gudkov, O. E. Kapp, C. A. Gapmash, V. E. Ivanov, A. V. Chernikov, A. A. Manokhin, M. E. Astashev, L. S. Yaguzhinsky, and V. I. Bruskov, Biophysics 57, 1 (2012).

    Article  CAS  Google Scholar 

  29. Infrared Spectroscopy of Polymers, Ed. by I. Dechant (Akad. Verlag, Berlin, 1972).

    Google Scholar 

  30. A. I. Konovalov and I. S. Ryzhkina, Russ. Chem. Bull. 63, 1 (2014).

    Article  CAS  Google Scholar 

  31. P. Raghavaiah, Thesis (Goa Univ. Taleigao Plateau Goa, India, 2007).

  32. I. Ignatov and O. Mosin, J. Health, Med. Nurs. 6, 50 (2014).

    Google Scholar 

  33. M. Sedlak and D. Rak, J. Phys. Chem. B 117, 2495 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. D. R. Cole, K. W. Herwig, E. Mamontov, and J. Z. Larese, Rev. Mineral. Geochem. 63, 313 (2006).

    Article  CAS  Google Scholar 

  35. E. D. Isaacs, A. Shukla, P. M. Platzman, et al., J. Phys. Chem. Solids 61, 403 (2000).

    Article  CAS  Google Scholar 

  36. S.-C. Park, E.-S. Moon, and H. Kang, Phys. Chem. Chem. Phys. 12, 12000 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Yu. A. Golovin, Soros. Obrazov. Zh. 6 (9), 66 (2000).

    Google Scholar 

  38. M. Chaplin, Water 1, 1 (2009).

    Article  Google Scholar 

  39. L. Pauling and P. Pauling, Chemistry (W. H. Freeman, San Francisco, 1975).

    Google Scholar 

  40. L. T. Bugaenko, S. M. Ryabykh, and A. L. Bugaenko, Moscow Univ. Chem. Bull. 63, 303 (2008).

    Article  Google Scholar 

  41. L. V. Belovolova, E. A. Vinogradov, and M. V. Glushkov, Phys. Wave Phenom. 21, 183 (2013).

    Article  Google Scholar 

  42. O. S. Nedelina, O. N. Brzhevskaya, E. N. Degtyarev, et al., in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (LIBROKOM, Moscow, 2008), p. 179 [in Russian].

    Google Scholar 

  43. O. S. Nedelina, O. N. Brzhevskaya, E. N. Degtyarev, and A. S. Zubkov, Dokl. Phys. Chem. 442, 31 (2012).

    Article  CAS  Google Scholar 

  44. O. S. Nedelina, O. N. Brzhevskaya, E. N. Degtyarev, et al., in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (KRASAND, Moscow, 2013), p. 347 [in Russian].

    Google Scholar 

  45. R. Chen, Y. Avotinsh, and G. R. Freeman, Can. J. Chem. 72, 1083 (1994).

    Article  CAS  Google Scholar 

  46. A. K. Pikaev, Modern Radiation Chemistry: Radiolysis of Gases and Liquids (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  47. P. P. Levin, O. N. Brzhevckaya, and O. C. Nedelina, Russ. Chem. Bull. 56, 1325 (2007).

    Article  CAS  Google Scholar 

  48. J. K. Thomas, S. Gordon, and E. J. Hart, J. Phys. Chem. 68, 1524 (1964).

    Article  CAS  Google Scholar 

  49. V. I. Lobyshev, R. E. Shikhlinskaya, and B. D. Ryzhikov, J. Mol. Liq. 82, 73 (1999).

    Article  CAS  Google Scholar 

  50. P. Vallée, J. Lafait, P. Mentré, et al., J. Chem. Phys. 122, 114513 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. L. V. Belovolova, M. V. Glushkov, and E. A. Vinogradov, in Proceedings of the 5th International Congress on Weak and Superweak Fields and Radiation in Biology and Medicine (St. Petersburg, 2009), p. 10. www.biophys.ru/archive/congress2009/pro-p10.pdf.

    Google Scholar 

  52. S. N. Shtykov, in Luminescence Analysis, Ed. by G. I. Romanovskaya, Vol. 19 of Problems in Analytical Chemistry (Nauka, Moscow, 2015), p. 127 [in Russian].

  53. S. N. Shtykov, J. Anal. Chem. 57, 859 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on a Bruker EMX-8 EPR spectrometer at the New Materials and Technologies shared resource center of the Emanuel Institute of Biochemical Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Lozinova.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozinova, T.A., Lobanov, A.V., Degtyarev, E.N. et al. Role of an Inorganic Phosphate in the Photogeneration of Hydrogen Peroxide in Aqueous Solutions of Adenine Derivatives at 77 K. Russ. J. Phys. Chem. 95, 1591–1600 (2021). https://doi.org/10.1134/S0036024421080185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421080185

Keywords:

Navigation