Skip to main content
Log in

Evaluating the mucoprotective effects of glycyrrhizic acid-loaded polymeric nanoparticles in a murine model of 5-fluorouracil-induced intestinal mucositis via suppression of inflammatory mediators and oxidative stress

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Objectives

5-Fluorouracil (5-FU), a chemotherapeutic drug, has severe deteriorating effects on the intestine, leading to mucositis. Glycyrrhizic acid is a compound derived from a common herbal plant Glycyrrhiza glabra, with mucoprotective, antioxidant and anti-inflammatory actions, however, associated with poor pharmacokinetics. Owing to the remarkable therapeutic action of glycyrrhizic acid-loaded polymeric nanocarriers in inflammatory bowel disease, we explored their activity against 5-FU-induced intestinal mucositis in mice. Polymeric nanocarriers have proven to be efficient drug delivery vehicles for the long-term treatment of inflammatory diseases, but have not yet been explored for 5-FU-induced mucositis. Therefore, this study aimed to produce glycyrrhizic acid-loaded polylactic-co-glycolic acid (GA-PLGA) nanoparticles to evaluate their protective and therapeutic effects in a 5-FU-induced mucositis model.

Methods

GA-PLGA nanoparticles were prepared using a modified double emulsion method, physicochemically characterized, and tested for in vitro drug release. Thereafter, mucositis was induced by 5-FU (50 mg/kg; IP) administration to the mice for the first 3 days (day 0, 1, 2), and mice were treated orally with GA-PLGA nanoparticles for 7 days (day 0–6).

Results

GA-PLGA nanoparticles significantly reduced mucositis severity measured by body weight, diarrhea score, distress, and anorexia. Further, 5-FU induced intestinal histopathological damage, altered villi-crypt length, reduced goblet cell count, elevated pro-inflammatory mediators, and suppressed antioxidant enzymes, all of which were reversed by GA-PLGA nanoparticles.

Conclusion

Morphological, behavioral, histological, and biochemical results suggested that GA-PLGA nanoparticles were efficient, biocompatible, targeted, and sustained release drug delivery nano-vehicle for enhanced mucoprotective, anti-inflammatory, and antioxidant effects in 5-FU-induced intestinal mucositis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Manuscirpt has no associate data. Raw data will be available on a suitable request.

References

  • Ali H, Weigmann B, Collnot E-M, Khan SA, Windbergs M, Lehr C-M (2016) Budesonide loaded PLGA nanoparticles for targeting the inflamed intestinal mucosa—pharmaceutical characterization and fluorescence imaging. Pharm Res 33:1085–1092

    Article  CAS  Google Scholar 

  • Ali J, Khan AU, Shah FA, Ali H, Islam SU, Kim YS, Khan S (2019) Mucoprotective effects of Saikosaponin-A in 5-fluorouracil-induced intestinal mucositis in mice model. Life Sci 239:116888

    Article  CAS  Google Scholar 

  • Arruda LF, Arruda SF, Campos NA, de Valencia FF, de Siqueira EMA (2013) Dietary iron concentration may influence aging process by altering oxidative stress in tissues of adult rats. PLoS ONE 8:e61058

    Article  CAS  Google Scholar 

  • Atiq A et al (2019) Diadzein ameliorates 5-fluorouracil-induced intestinal mucositis by suppressing oxidative stress and inflammatory mediators in rodents. Eur J Pharmacol 843:292–306. https://doi.org/10.1016/j.ejphar.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  • Basile D et al (2019) Mucosal injury during anti-cancer treatment: from pathobiology to bedside. Cancers 11:857

    Article  CAS  Google Scholar 

  • Blijlevens N, Donnelly J, De Pauw B (2000) Mucosal barrier injury: biology, pathology, clinical counterparts and consequences of intensive treatment for haematological malignancy: an overview. Bone Marrow Transplant 25:1269–1278

    Article  CAS  Google Scholar 

  • Bode AM, Dong Z (2015) Chemopreventive effects of licorice and its components. Curr Pharmacol Rep 1:60–71

    Article  CAS  Google Scholar 

  • Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. C R Phys 12:620–636

    Article  CAS  Google Scholar 

  • Chang C-T et al (2012) 5-Fluorouracil induced intestinal mucositis via nuclear factor-κB activation by transcriptomic analysis and in vivo bioluminescence imaging. PLoS ONE 7:e31808–e31808. https://doi.org/10.1371/journal.pone.0031808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H et al (2020) Berberine regulates fecal metabolites to ameliorate 5-fluorouracil induced intestinal mucositis through modulating gut microbiota. Biomed Pharmacother 124:109829. https://doi.org/10.1016/j.biopha.2020.109829

    Article  CAS  PubMed  Google Scholar 

  • Cherng J-M, Lin H-J, Hung M-S, Lin Y-R, Chan M-H, Lin J-C (2006) Inhibition of nuclear factor κB is associated with neuroprotective effects of glycyrrhizic acid on glutamate-induced excitotoxicity in primary neurons. Eur J Pharmacol 547:10–21

    Article  CAS  Google Scholar 

  • Collnot E-M, Ali H, Lehr C-M (2012) Nano-and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release 161:235–246

    Article  CAS  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  CAS  Google Scholar 

  • dos Filho EXS et al (2016) Curcuminoids from Curcuma longa L. reduced intestinal mucositis induced by 5-fluorouracil in mice: Bioadhesive, proliferative, anti-inflammatory and antioxidant effects. Toxicol Rep 3:55–62

    Article  Google Scholar 

  • Duncan M, Grant G (2003) Oral and intestinal mucositis—causes and possible treatments. Aliment Pharmacol Ther 18:853–874

    Article  CAS  Google Scholar 

  • Erben U et al (2014) A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol 7:4557

    PubMed  PubMed Central  Google Scholar 

  • Gelen V, Şengül E, Yıldırım S, Atila G (2018) The protective effects of naringin against 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats. Iran J Basic Med Sci 21:404–410. https://doi.org/10.22038/IJBMS.2018.27510.6714

    Article  PubMed  PubMed Central  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  Google Scholar 

  • Hadwan MH, Abed HN (2016) Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief 6:194–199

    Article  Google Scholar 

  • Keefe D, Cummins A, Dale B, Kotasek D, Robb T, Sage R (1997) Effect of high-dose chemotherapy on intestinal permeability in humans. Clin Sci (london, England: 1979) 92:385–389

    Article  CAS  Google Scholar 

  • Khan R et al (2013) Glycyrrhizic acid suppresses the development of precancerous lesions via regulating the hyperproliferation, inflammation, angiogenesis and apoptosis in the colon of Wistar rats. PLoS ONE 8:e56020

    Article  CAS  Google Scholar 

  • Khan R, Rehman MU, Khan AQ, Tahir M, Sultana S (2018) Glycyrrhizic acid suppresses 1, 2-dimethylhydrazine-induced colon tumorigenesis in Wistar rats: alleviation of inflammatory, proliferation, angiogenic, and apoptotic markers. Environ Toxicol 33:1272–1283

    Article  CAS  Google Scholar 

  • Lalla RV et al (2014) MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 120:1453–1461. https://doi.org/10.1002/cncr.28592

    Article  PubMed  Google Scholar 

  • Leocádio PC et al (2015) L-arginine pretreatment reduces intestinal mucositis as induced by 5-FU in mice. Nutr Cancer 67:486–493

    Article  Google Scholar 

  • Li H-L et al (2017) Alteration of gut microbiota and inflammatory cytokine/chemokine profiles in 5-fluorouracil induced intestinal mucositis. Front Cell Infect Microbiol 7:455

    Article  Google Scholar 

  • Logan RM, Stringer AM, Bowen JM, Gibson RJ, Sonis ST, Keefe DM (2009) Is the pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the type of mucotoxic drug administered? Cancer Chemother Pharmacol 63:239–251

    Article  CAS  Google Scholar 

  • Ming LJ, Yin ACY (2013) Therapeutic effects of glycyrrhizic acid. Nat Prod Commun. https://doi.org/10.1177/1934578X1300800335

  • Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica Et Biophysica Acta (BBA) Gen Subj 582:67–78

    Article  CAS  Google Scholar 

  • Naidu MUR, Ramana GV, Rani PU, Mohan IK, Suman A, Roy P (2004) Chemotherapy-induced and/or radiation therapy-induced oral mucositis—complicating the treatment of cancer. Neoplasia (new York, NY) 6:423

    Article  Google Scholar 

  • Ploeger BA, Meulenbelt J, DeJongh J (2000) Physiologically based pharmacokinetic modeling of glycyrrhizic acid, a compound subject to presystemic metabolism and enterohepatic cycling. Toxicol Appl Pharmacol 162:177–188

    Article  CAS  Google Scholar 

  • Soares PM et al (2008) Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemother Pharmacol 63:91–98

    Article  CAS  Google Scholar 

  • Song M-K, Park M-Y, Sung M-K (2013) 5-Fluorouracil-induced changes of intestinal integrity biomarkers in BALB/c mice. J Cancer Prev 18:322

    Article  Google Scholar 

  • Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Hamilton J, Keefe DM (2009) Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med 234:430–441

    Article  CAS  Google Scholar 

  • Su X, Wu L, Hu M, Dong W, Xu M, Zhang P (2017) Glycyrrhizic acid: a promising carrier material for anticancer therapy. Biomed Pharmacother 95:670–678. https://doi.org/10.1016/j.biopha.2017.08.123

    Article  CAS  PubMed  Google Scholar 

  • Tadesse S, Corner G, Dhima E, Houston M, Guha C, Augenlicht L, Velcich A (2017) MUC2 mucin deficiency alters inflammatory and metabolic pathways in the mouse intestinal mucosa. Oncotarget 8:71456

    Article  Google Scholar 

  • Takeuchi I, Kamiki Y, Makino K (2018) Therapeutic efficacy of rebamipide-loaded PLGA nanoparticles coated with chitosan in a mouse model for oral mucositis induced by cancer chemotherapy. Colloids Surf B 167:468–473

    Article  CAS  Google Scholar 

  • van Vliet MJ, Harmsen HJ, de Bont ES, Tissing WJ (2010) The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog 6:e1000879

    Article  Google Scholar 

  • Wang YM, Du GQ (2016) Glycyrrhizic acid prevents enteritis through reduction of NF-κB p65 and p38MAPK expression in rat. Mol Med Rep 13:3639–3646

    Article  CAS  Google Scholar 

  • Wang C-Y, Kao T-C, Lo W-H, Yen G-C (2011) Glycyrrhizic acid and 18β-glycyrrhetinic acid modulate lipopolysaccharide-induced inflammatory response by suppression of NF-κB through PI3K p110δ and p110γ inhibitions. J Agric Food Chem 59:7726–7733. https://doi.org/10.1021/jf2013265

    Article  CAS  PubMed  Google Scholar 

  • Wang X-r, Hao H-g, Chu L (2017) Glycyrrhizin inhibits LPS-induced inflammatory mediator production in endometrial epithelial cells. Microbial Pathog 109:110–113. https://doi.org/10.1016/j.micpath.2017.05.032

    Article  CAS  Google Scholar 

  • Whittaker AL, Lymn KA, Wallace GL, Howarth GS (2016) Differential effectiveness of clinically-relevant analgesics in a rat model of chemotherapy-induced mucositis. PLoS ONE 11:e0158851. https://doi.org/10.1371/journal.pone.0158851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright TH et al (2009) The herbal extract Iberogast® improves jejunal integrity in rats with 5-fluorouracil (5-FU)-induced mucositis. Cancer Biol Ther 8:923–929

    Article  Google Scholar 

  • Yan X-x et al (2020) A new recombinant MS-superoxide dismutase alleviates 5-fluorouracil-induced intestinal mucositis in mice. Acta Pharmacol Sin 41:348–357

    Article  CAS  Google Scholar 

  • Yang T et al (2017) Enhanced efficacy with reduced toxicity of chemotherapy drug 5-fluorouracil by synergistic treatment with Abnormal Savda Munziq from Uyghur medicine. BMC Complement Altern Med 17:201. https://doi.org/10.1186/s12906-017-1685-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung C-Y et al (2015) Amelioration of chemotherapy-induced intestinal mucositis by orally administered probiotics in a mouse model. PLoS ONE 10:e0138746

    Article  Google Scholar 

  • Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21:559

    Article  Google Scholar 

  • Zeeshan M, Ali H, Khan S, Khan SA, Weigmann B (2019a) Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int J Pharm 558:201–214

    Article  CAS  Google Scholar 

  • Zeeshan M, Ali H, Khan S, Mukhtar M, Khan MI, Arshad M (2019b) Glycyrrhizic acid-loaded pH-sensitive poly-(lactic-co-glycolic acid) nanoparticles for the amelioration of inflammatory bowel disease. Nanomedicine 14:1945–1969

    Article  CAS  Google Scholar 

  • Zhang T et al (2017a) Volatile oil from Amomi Fructus attenuates 5-fluorouracil-induced intestinal mucositis. Front Pharmacol 8:786

    Article  Google Scholar 

  • Zhang S, Liu Y, Xiang D, Yang J, Liu D, Ren X, Zhang C (2018) Assessment of dose-response relationship of 5-fluorouracil to murine intestinal injury. Biomed Pharmacother 106:910–916

    Article  CAS  Google Scholar 

  • Zhang L, Jin Y, Peng J, Chen W, Lisha L, Lin J (2019) Qingjie Fuzheng Granule attenuates 5-fluorouracil-induced intestinal mucosal damage. Biomed Pharmacother 118:109223. https://doi.org/10.1016/j.biopha.2019.109223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We have acknowledged Prof. Benno Weigmann, University of Erlangen-Nürnberg, Germany, for his expert advice in the experiments.

Funding

The manuscript has been funded under HEC NRPU project No. 9272/Federal/NRPU/R&D/HEC/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussain Ali.

Ethics declarations

Conflict of interest

Authors declared no conflict of interests.

Ethics approval

All animal studies were approved and performed according to the bioethical committee protocols of Quaid-i-Azam University, Islamabad for the care and use of laboratory animals (Approval no. BES-fbs-QAU2018-75).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeeshan, M., Atiq, A., Ain, Q.U. et al. Evaluating the mucoprotective effects of glycyrrhizic acid-loaded polymeric nanoparticles in a murine model of 5-fluorouracil-induced intestinal mucositis via suppression of inflammatory mediators and oxidative stress. Inflammopharmacol 29, 1539–1553 (2021). https://doi.org/10.1007/s10787-021-00866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-021-00866-z

Keywords

Navigation