Skip to main content
Log in

Enhanced decontamination of pefloxacin and chlorpyrifos as organic pollutants using chitosan/diatomite composite as a multifunctional adsorbent; equilibrium studies

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Chitosan/diatomite composite (CH/D) was synthesized at potential multifunctional adsorbent of enhanced uptake capacities for different species of organic water pollutants. The synthetic CH/D composite was characterized and applied in batch adsorption studies for pefloxacin (PF) as pharmaceutical residual and chlorpyrifos (CF) as pesticide residual from water. The CH/D composite is of enhanced uptake capacities for both PF (310.7 mg/g) and CF (392.2 mg/g) as compared to diatomite and chitosan and single components. The PF and CF uptake reactions follow the Langmuir model as an equilibrium model which demonstrates their adsorption in monolayer and homogenous form. The PF uptake process is of Pseudo-First order kinetic while the CF uptake process is of Pseudo-Second order kinetics. The Gaussian energies (6.74 KJ/mol (PF) and 7.76 KJ/mol (CF)) and thermodynamic parameters suggest PF and CF adsorption reactions of physical, feasible, exothermic, and spontaneous properties. The CH/D composite exhibits strong selectivity for PF and CF molecules in the existence of PO43−, SO42−, and NO3 anions and considerable selectivity for them in the coexistence of Zn2+, Cd2+, and Pb2+ metal cations. The CH/D composite is of remarkable recyclability and reused in the removal of PF and CF for five cycles with removal percentages higher than 86% and 89%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brandes R, Belosinschi D, Brouillette F, Chabot B (2019) A new electrospun chitosan/phosphorylated nanocellulose biosorbent for the removal of cadmium ions from aqueous solutions. J Environ Chem Eng 7(6):103477

    Article  CAS  Google Scholar 

  2. Ramya E, Thirumurugan A, Rapheal VS, Anand K (2019) CuO@ SiO2 nanoparticles assisted photocatalytic degradation of 4-nitrophenol and their antimicrobial activity studies. Environ Nanotechnol Monit Manag 100240

  3. Ren J, Wang C, Li C, Fan B, Niu D (2020) Biodegradation of acephate by Bacillus paramycoides NDZ and its degradation pathway. World J Microbiol Biotechnol 36(10):1–11

    Article  CAS  Google Scholar 

  4. Saad AM, Abukhadra MR, Ahmed SAK, Elzanaty AM, Mady AH, Betiha MA, Shim JJ, Rabie AM (2020) Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce–ZnO nano-flowers under visible light. J Environ Manag 258:110043

    Article  CAS  Google Scholar 

  5. Salam MA, AbuKhadra MR, Mohamed AS (2020) Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles. Environ Pollut 259:113874

    Article  CAS  Google Scholar 

  6. Wang A, Chen Z, Zheng Z, Xu H, Wang H, Hu K, Yan K (2020) Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@ MnOx microspheres. Chem Eng J 379:122340

    Article  CAS  Google Scholar 

  7. Mohamed AS, Abukkhadra MR, Abdallah EA, El-Sherbeeny AM, Mahmoud RK (2020) The photocatalytic performance of silica fume based Co3O4/MCM-41 green nanocomposite for instantaneous degradation of Omethoate pesticide under visible light. J Photochem Photobiol A 392:112434

    Article  CAS  Google Scholar 

  8. ul Haq A, Saeed M, Usman M, Naqvi SAR, Bokhari TH, Maqbool T, Ghaus H, Tahir T, Khalid H (2020) Sorption of chlorpyrifos onto zinc oxide nanoparticles impregnated Pea peels (Pisum sativum L): equilibrium, kinetic and thermodynamic studies. Environ Technol Innov 17:100516

    Article  Google Scholar 

  9. Hamadeen HM, Elkhatib EA, Badawy ME, Abdelgaleil SA (2021) Green low cost nanomaterial produced from Moringa oleifera seed waste for enhanced removal of chlorpyrifos from wastewater: mechanism and sorption studies. J Environ Chem Eng 105376

  10. Yang J, Ma C, Tao J, Li J, Du K, Wei Z, Chen C, Wang Z, Zhao C, Ma M (2020) Optimization of polyvinylamine-modified nanocellulose for chlorpyrifos adsorption by central composite design. Carbohydr Polym 245:116542

    Article  CAS  Google Scholar 

  11. Jacob MM, Ponnuchamy M, Kapoor A, Sivaraman P (2020) Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water. J Environ Chem Eng 8(4):103904

    Article  CAS  Google Scholar 

  12. Zheng H, Zhang Q, Liu G, Luo X, Li F, Zhang Y, Wang Z (2019) Characteristics and mechanisms of chlorpyrifos and chlorpyrifos-methyl adsorption onto biochars: influence of deashing and low molecular weight organic acid (LMWOA) aging and co-existence. Sci Total Environ 657:953–962

    Article  CAS  Google Scholar 

  13. Pareshkumar GM, Kumar MA, Thorat RB, Rathod M, Khambhaty Y, Basha S (2017) Nanocellulose for biosorption of chlorpyrifos from water: chemometric optimization, kinetics and equilibrium. Cellulose 24:1319–1332

    Article  CAS  Google Scholar 

  14. Zhao J, Guo X, He Q, Song Q, Wu F, Zhang C (2020) Solvothermal synthesis of InNbO4 cubes for efficient degradation of pefloxacin. Spectrochim Acta A Mol Biomol Spectrosc 234:118247

    Article  CAS  Google Scholar 

  15. Xiang Y, Yang X, Xu Z, Hu W, Zhou Y, Wan Z, Yang Y, Wei Y, Yang J, Tsang DC (2020) Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: effects and mechanisms. Sci Total Environ 709:136079

    Article  CAS  Google Scholar 

  16. Zhou Y, He Y, Xiang Y, Meng S, Liu X, Yu J, Yang J, Zhang J, Qin P, Luo L (2019) Single and simultaneous adsorption of pefloxacin and Cu (II) ions from aqueous solutions by oxidized multiwalled carbon nanotube. Sci Total Environ 646:29–36

    Article  CAS  Google Scholar 

  17. Yin G, Hou L, Liu M, Zheng Y, Li X, Lin X, Gao J, Jiang X, Wang R, Yu C (2017) Effects of multiple antibiotics exposure on denitrification process in the Yangtze Estuary sediments. Chemosphere 171:118–125

    Article  CAS  Google Scholar 

  18. Abukhadra MR, El-Sherbeeny AM, El-Meligy MA, Luqman M (2021) Insight into carbohydrate polymers (chitosan and 2-hydroxyethyl methacrylate/methyl methacrylate) intercalated bentonite-based nanocomposites as multifunctional and environmental adsorbents for methyl parathion pesticide. Int J Biol Macromol 167:335–344

    Article  CAS  Google Scholar 

  19. Jiao Z, Meng Y, He C, Yin X, Wang X, Wei Y (2021) One-pot synthesis of silicon-based zirconium phosphate for the enhanced adsorption of Sr (II) from the contaminated wastewater. Microporous Mesoporous Mater 111016

  20. Jiang Y, Abukhadra MR, Refay NM, Sharaf MF, El-Meligy MA, Awwad EM (2020) Synthesis of chitosan/MCM-48 and β-cyclodextrin/MCM-48 composites as bio-adsorbents for environmental removal of Cd2+ ions; kinetic and equilibrium studies. React Funct Polym 154:104675

    Article  CAS  Google Scholar 

  21. Taki K, Mukherjee S, Patel AK, Kumar M (2020) Reappraisal review on geopolymer: a new era of aluminosilicate binder for metal immobilization. Environ Nanotechnol Monit Manag 14:100345

    Google Scholar 

  22. Abukhadra MR, Fathallah W, El Kashief FA, El-Sherbeeny AM, El-Meligy MA, Awwad EM, Luqman M (2021) Insight into the antimicrobial and photocatalytic properties of NiO impregnated MCM-48 for effective removal of pathogenic bacteria and toxic levofloxacin residuals. Microporous Mesoporous Mater 312:110769

    Article  CAS  Google Scholar 

  23. Fan HB, Ren QF, Wang SL, Jin Z, Ding Y (2019) Synthesis of the Ag/Ag3PO4/diatomite composites and their enhanced photocatalytic activity driven by visible light. J Alloy Compd 775:845–852

    Article  CAS  Google Scholar 

  24. Liu G, Abukhadra MR, El-Sherbeeny AM, Mostafa AM, Elmeligy MA (2020) Insight into the photocatalytic properties of diatomite@ Ni/NiO composite for effective photo-degradation of malachite green dye and photo-reduction of Cr (VI) under visible light. J Environ Manag 254:109799

    Article  CAS  Google Scholar 

  25. AbuKhadra MR, Eid MH, Allam AA, Ajarem JS, Almalki AM, Salama Y (2020) Evaluation of different forms of Egyptian diatomite for the removal of ammonium ions from Lake Qarun: a realistic study to avoid eutrophication. Environ Pollut 266:115277

    Article  CAS  Google Scholar 

  26. Rabie AM, Shaban M, Abukhadra MR, Hosny R, Ahmed SA, Negm NA (2019) Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. J Mol Liq 279:224–231

    Article  CAS  Google Scholar 

  27. Dizaji BF, Azerbaijan MH, Sheisi N, Goleij P, Mirmajidi T, Chogan F, Irani M, Sharafian F (2020) Synthesis of PLGA/chitosan/zeolites and PLGA/chitosan/metal organic frameworks nanofibers for targeted delivery of Paclitaxel toward prostate cancer cells death. Int J Biol Macromol 164:1461–1474

    Article  CAS  Google Scholar 

  28. Servatan M, Zarrintaj P, Mahmodi G, Kim SJ, Ganjali MR, Saeb MR, Mozafari M (2020) Zeolites in drug delivery: progress, challenges and opportunities. Drug Discov Today 25(4):642–656

    Article  CAS  Google Scholar 

  29. Shariatinia Z (2019) Pharmaceutical applications of chitosan. Adv Colloid Interface Sci 263:131–194

    Article  CAS  Google Scholar 

  30. Mukerabigwi JF, Lei S, Fan L, Wang H, Luo S, Ma X, Qin J, Huang X, Cao Y (2016) Eco-friendly nano-hybrid superabsorbent composite from hydroxyethyl cellulose and diatomite. RSC Adv 6(38):31607–31618

    Article  CAS  Google Scholar 

  31. Wang Y, Zhou R, Wang C, Zhou G, Hua C, Cao Y, Song Z (2020) Novel environmental-friendly nano-composite magnetic attapulgite functionalized by chitosan and EDTA for cadmium (II) removal. J Alloys Compd 817:153286

    Article  CAS  Google Scholar 

  32. Soltani R, Dinari M, Mohammadnezhad G (2018) Ultrasonic-assisted synthesis of novel nanocomposite of poly (vinyl alcohol) and amino-modified MCM-41: a green adsorbent for Cd (II) removal. Ultrason Sonochem 40:533–542

    Article  CAS  Google Scholar 

  33. Chen L, Wu P, Chen M, Lai X, Ahmed Z, Zhu N, Dang Z, Bi Y, Liu T (2018) Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead. Appl Clay Sci 159:74–82

    Article  CAS  Google Scholar 

  34. Vigneshwaran S, Preethi J, Meenakshi S (2019) Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: photocatalytic and adsorption studies. Int J Biol Macromol 132:289–299

    Article  CAS  Google Scholar 

  35. Huang Y, Li S, Chen J, Zhang X, Chen Y (2014) Adsorption of Pb (II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: adsorption capacity, kinetic and isotherm studies. Appl Surf Sci 293:160–168

    Article  CAS  Google Scholar 

  36. Li X, Zhang D, Sheng F, Qing H (2018) Adsorption characteristics of Copper (II), Zinc (II) and Mercury (II) by four kinds of immobilized fungi residues. Ecotoxicol Environ Saf 147:357–366

    Article  CAS  Google Scholar 

  37. Huang Y, Zhang W, Pang S, Chen J, Bhatt P, Mishra S, Chen S (2021) Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos. Environ Res 194:110660

    Article  CAS  Google Scholar 

  38. Mostafa M, El-Meligy MA, Sharaf M, Soliman AT, AbuKhadra MR (2021) Insight into chitosan/zeolite-A nanocomposite as an advanced carrier for levofloxacin and its anti-inflammatory properties; loading, release, and anti-inflammatory studies. Int J Biol Macromol 179:206–216

    Article  CAS  Google Scholar 

  39. El-Zeiny HM, Abukhadra MR, Sayed OM, Osman AH, Ahmed SA (2020) Insight into novel β-cyclodextrin-grafted-poly (N-vinylcaprolactam) nanogel structures as advanced carriers for 5-fluorouracil: equilibrium behavior and pharmacokinetic modeling. Colloids Surf A 586:124197

    Article  CAS  Google Scholar 

  40. Dinu MV, Lazar MM, Dragan ES (2017) Dual ionic cross-linked alginate/clinoptilolite composite microbeads with improved stability and enhanced sorption properties for methylene blue. React Funct Polym 116:31–40

    Article  CAS  Google Scholar 

  41. Dragan ES, Dinu MV (2018) Spectacular selectivity in the capture of methyl orange by composite anion exchangers with the organic part hosted by DAISOGEL microspheres. ACS Appl Mater Interfaces 10(24):20499–20511

    Article  CAS  Google Scholar 

  42. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

    Article  CAS  Google Scholar 

  43. Dardir FM, Ahmed EA, Soliman MF, Othman SI, Allam AA, Alwail MA, Abukhadra MR (2021) Synthesis of chitosan/Al-MCM-41 nanocomposite from natural microcline as a carrier for levofloxacin drug of controlled loading and release properties; equilibrium, release kinetic, and cytotoxicity. Coll Surf A 624:126805

    Article  CAS  Google Scholar 

  44. Kamarudin NHN, Jalil AA, Triwahyono S, Salleh NFM, Karim AH, Mukti RR, Hameed BH, Ahmad A (2013) Role of 3-aminopropyltriethoxysilane in the preparation of mesoporous silica nanoparticles for ibuprofen delivery: effect on physicochemical properties. Microporous Mesoporous Mater 180:235–241

    Article  CAS  Google Scholar 

  45. Vieira AP, Badshah S, Airoldi C (2013) Ibuprofen-loaded chitosan and chemically modified chitosans-release features from tablet and film forms. Int J Biol Macromol 52:107–115

    Article  CAS  Google Scholar 

  46. Ma H, Yu B, Wang Q, Owens G, Chen Z (2021) Enhanced removal of pefloxacin from aqueous solution by adsorption and Fenton-like oxidation using NH2-MIL-88B. J Colloid Interface Sci 583:279–287

    Article  CAS  Google Scholar 

  47. Kamboh MA, Ibrahim WAW, Nodeh HR, Sanagi MM, Sherazi STH (2016) The removal of organophosphorus pesticides from water using a new amino-substituted calixarene-based magnetic sporopollenin. New J Chem 40:3130–3138

    Article  CAS  Google Scholar 

  48. Okoya AA, Adegbaju OS, Akinola OE, Akinyele AB, Amuda OS (2020) Comparative assessment of the efficiency of rice husk biochar and conventional water treatment method to remove chlorpyrifos from pesticide polluted water. Curr J Appl Sci Technol 39:1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Researchers Supporting Project number (RSP-2021/149), King Saud University, Riyadh, Saudi Arabia.

Authors contributions

The authors contribute equally in preparing the material, designing the experimental section, interpreting the results, and writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa R. Abukhadra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The manuscript does not include experimental studies on any animal or human data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abukhadra, M.R., Ibrahim, S.M., Khim, J.S. et al. Enhanced decontamination of pefloxacin and chlorpyrifos as organic pollutants using chitosan/diatomite composite as a multifunctional adsorbent; equilibrium studies. J Sol-Gel Sci Technol 99, 650–662 (2021). https://doi.org/10.1007/s10971-021-05613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05613-y

Keywords

Navigation