Skip to main content
Log in

Infrared Image Correlation for Non-destructive Testing and Evaluation of Materials

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The active thermal non-destructive testing and evaluation technique plays a vital role in health monitoring of various solid materials. Present manuscript demonstrates the applicability of pulse compression favorable Digitized version of linear Frequency Modulated Thermal Wave Imaging (DFMTWI) approach to identify flaws having different geometrical shapes in a Glass Fibre Reinforced Polymer (GFRP) sample. A novel Thermal Image Correlation (TIC) data-processing approach is proposed to obtain the isothermal patterns from the reconstructed pulse compressed data through matched filter scheme to identify sub-surface anomalies. The detection capabilities of the presented approach are compared on various adopted data processing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maldague, X.P.V.: ‘Theory and practice of infrared technology for nondestructive testing.’ Wiley, New York, NY (2001)

    Google Scholar 

  2. Vavilov, V.P.: Thermal nondestructive testing of materials and products: a review. Russ. J. Nondestr. Test. 53(10), 707–730 (2017)

    Article  Google Scholar 

  3. Vavilov, V., Burleigh, D.: Infrared thermography and thermal nondestructive testing, p. 595. Springer Nature, Switzerland (2020)

  4. Mayre, G., Hendorfer, G.: Characterization of defects in curved carbon fiber reinforced plastics using pulsed thermography. Quant. Infr. Therm. J. 7(1), 3–16 (2020)

    Article  Google Scholar 

  5. Klein, M.T., Ibarra-Castanedo, C., Bendada, A., Maldague, X.P.: Thermographic signal processing through correlation operators in pulsed thermography (2008) Proceedings of SPIE - The International Society for Optical Engineering, 6939, Article no 693915

  6. Netzelmann, U., Walle, G., Lugin, S., Ehlen, A., Bessert, S., Valeske, B.: Induction thermography: principle, applications and first steps towards standardization. Quant. InfraRed Thermogr. J. 13(2), 170–181 (2016)

    Article  Google Scholar 

  7. Balageas, D.L., Krapez, J.C., Cielo, P.: Pulsed photothermal modeling of layered materials. J. Appl. Phys. 59(2), 348–357 (1986)

    Article  Google Scholar 

  8. Tam, A.C.: Pulsed photothermal radiometry for noncontact spectroscopy, material testing and inspection measurements. Infrared Phys. 25, 305–313 (1985)

    Article  Google Scholar 

  9. Busse, G., Wu, D., Karpen, W.: Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71(8), 3962–3965 (1992)

    Article  Google Scholar 

  10. Meola, C.: Nondestructive evaluation of materials with rear heating lock-in thermography. IEEE Sens. J. 7(10), 1388–1389 (2007)

    Article  Google Scholar 

  11. Bai, W., Wong, B.S.: Evaluation of defects in composite plates under convective environments using lock-in thermography. Meas. Sci. Technol. 12, 142–150 (2001)

    Article  Google Scholar 

  12. Maldague, X., Marinetti, S.: Pulse phase infrared thermography. J. Appl. Phys. 79(5), 2694–2698 (1996)

    Article  Google Scholar 

  13. Maldague, X., Galmiche, F., Ziadi, A.: Advances in pulsed phase thermography. Infrared Phys. Technol. 43(3–5), 175–181 (2002)

    Article  Google Scholar 

  14. Vavilov, V.P., Marinetti, S.: Pulse phase thermography and thermal tomography using Fourier transformation. Russ. J. Nondestruct. Test. 35(2), 58–72 (1999)

    Google Scholar 

  15. Mulaveesala, R., Tuli, S.: Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection. Appl. Phys. Lett. 89(19), 191913 (2006)

    Article  Google Scholar 

  16. Turin, G.L.: An introduction to matched filters. IRE Trans. Inform. Theory 6(3), 311–329 (1960)

    Article  MathSciNet  Google Scholar 

  17. Kirkbright, G.F., Miller, R.M.: Cross-correlation techniques for signal recovery in thermal wave imaging. Anal. Chem. 55(3), 502–506 (1983)

    Article  Google Scholar 

  18. Oelze, M.L.: Bandwidth and resolution enhancement through pulse compression. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(4), 768–781 (2007)

    Article  Google Scholar 

  19. Tuli, S., Mulaveesala, R.: Defect detection by pulse compression in frequency modulated thermal wave imaging. Quant. InfraRed Thermogr. J. 2(1), 41–54 (2005)

    Article  Google Scholar 

  20. Mulaveesala, R., Venkata Ghali, S.: Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics. Rev. Sci. Instr. 82(5), 054902 (2011)

    Article  Google Scholar 

  21. Mulaveesala, R., Vaddi, J.S., Singh, P.: Pulse compression approach to infrared nondestructive characterization. Rev. Sci. Instr. 79(9), 094901 (2008)

    Article  Google Scholar 

  22. Tabatabaei, N., Mandelis, A., Amaechi, B.: Thermophotonic radar imaging; An emissivity-normalized modality with advantages over phase lock-in thermography. Appl. Phys. Lett. 98, 163706 (2011)

    Article  Google Scholar 

  23. Mulaveesala, R., Ghali, V.S.: Cross-correlation-based approach for thermal non-destructive characterisation of carbon fibre reinforced plastics. Insight Non-Destr. Test. Cond Monit 53(1), 34–36 (2011)

    Article  Google Scholar 

  24. Mulaveesala, R., Arora, V, Dua, G.: Pulse compression favorable thermal wave imaging techniques for non-destructive testing and evaluation of materials. IEEE Sensors J (In press) (2020)

  25. Yang, R., He, Y.: Optically and non-optically excited thermography for composites: a review. Infrared Phys. Technol. 75, 26–50 (2016)

    Article  Google Scholar 

  26. Laureti, S., Sfarra, S., Malekmohammadi, H., Burrascano, P., Hutchins, D.A., Senni, L., Ricci, M.: The use of pulsecompression thermography for detecting defects in paintings. NDT and E Int 98(3), 147–154 (2018)

    Article  Google Scholar 

  27. Tavakolian, P., Mandelis, A.: Perspective: Principles and specifications of photothermal imaging methodologies and their applications to non-invasive biomedical and nondestructive materials imaging. J. Appl. Phys. 124(16), 1–12 (2018)

    Article  Google Scholar 

  28. Silipigni, G., Burrascano, P., Hutchins, D.A., et al.: Optimization of the pulse-compression technique applied to the infrared thermography nondestructive evaluation. NDT E Int. 87, 100–110 (2017)

    Article  Google Scholar 

  29. Laureti, S., Silipigni, G., Senni, L., et al.: Comparative study between linear and non-linear frequency-modulated pulsecompression thermography. Infrared Phys. Technol. 57(18), D32-39 (2018)

    Google Scholar 

  30. Wu, S., Gao, B., Yang, Y., et al.: Halogen optical referred pulse-compression thermography for defect detection of CFRP,". Infrared Phys. Technol. 102, 103006 (2019)

    Article  Google Scholar 

  31. Tavakolian, P., Sfarra, S., Gargiulo, G., Sivagurunathan, K., Mandelis, A.: Photothermal coherence tomography for 3-D visualization and structural non-destructive imaging of a wood inlay. Infrared Phys. Technol. 91, 206–213 (2018)

    Article  Google Scholar 

  32. Tabatabaei, N., Mandelis, A.: Thermal coherence tomography using match filter binary phase coded diffusion waves”. Phys. Rev. Lett. 107, 165901 (2011)

    Article  Google Scholar 

  33. Kaiplavil, S., Mandelis, A.: Truncated-correlation photothermal coherence tomography for deep subsurface analysis. Nat. Photon. 8(8), 635–642 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravibabu Mulaveesala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, V., Mulaveesala, R., Rani, A. et al. Infrared Image Correlation for Non-destructive Testing and Evaluation of Materials. J Nondestruct Eval 40, 75 (2021). https://doi.org/10.1007/s10921-021-00805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00805-6

Keywords

Navigation