Skip to main content
Log in

Combined factors influencing the surface charge and aggregation behaviors of TiO2 nanoparticles in the presence of humic acid and UV irradiation

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The environmental behavior and ultimate fate of the engineered nanoparticles could inevitably be affected by the widespread dissolved organic matter and sunlight irradiation in the natural environment. In this study, an analysis combined with experimental investigations was used to explore the influence of humic acid (HA) and UV irradiation on the changes in surface charge and aggregation behavior of TiO2 nanoparticles. A prolonged UV irradiation caused the point of zero charge (PZC) of TiO2 nanoparticles shifted to lower values and the aggregate size reached to a maximum value at the PZC. TEM image and FT-IR spectroscopy analysis confirmed the formation of TiO2 cluster aggregates and successive growth of the hydroxyl groups on different sites on TiO2 surface, respectively, although no effect of irradiation on the phase transformation of TiO2 nanoparticles was observed through the use of Raman spectroscopy. The fluorescence spectroscopy analysis illustrated the interactions between the surface hydroxyls formed during UV irradiation on TiO2 surface and functional groups on HA molecules, which accelerated the aggregation process of TiO2 nanoparticles. Widespread HA and UV irradiation in the natural environment significantly altered the surface properties and stability of the nanoparticles in aqueous environments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  • Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  Google Scholar 

  • Ohno T, Mitsui T, Matsumura M (2003) TiO2–photocatalyzed oxidation of adamantane in solutions containing oxygen or hydrogen peroxide. J Photochem Photobiol Chem 160:3–9

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu M, Zhang S, Cai Y, Lv Z, Fang M, Tan X, Wang X (2020) Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl Catal B 279:119390

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  Google Scholar 

  • Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693

    Article  CAS  Google Scholar 

  • Daskalaki VM, Antoniadou M, Puma GL, Kondarides DI, Lianos P (2010) Solar light-responsive Pt/Cds/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in waste water. Environ Sci Technol 44:7200–7205

    Article  CAS  Google Scholar 

  • Sun J, Guo L, Zhang H, Zhao L (2014) UV irradiation induced transformation of TiO2 nanoparticles in water: aggregation and photoreactivity. Environ Sci Technol 48:11962–11968

    Article  CAS  Google Scholar 

  • Hu G, Cao J, Lu M, Lin ZX (2020) Study on the characteristics of naturally formed TiO2 nanoparticles in various surficial media from China. Chem Geol 550:119703

    Article  CAS  Google Scholar 

  • Priester JH, GeY Chang V, Stoimenov PK, Schimel JP, Stucky GD (2013) Holden P. A. Assessing interactions of hydrophilic nanoscale TiO2 with soil water. J Nanopart Res 15:1899

    Article  Google Scholar 

  • Battin TI, Kammer FVD, Weilhartner A, Ottofuelling S, Hofmann T (2009) Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:8098–8104

    Article  CAS  Google Scholar 

  • Wang P, Qi W, Ao Y, Hou J, Wang C, Qian J (2016) Effect of UV irradiation on the aggregation of TiO2 in an aquatic environment: influence of humic acid and pH. Environ Pollut 212:178–187

    Article  CAS  Google Scholar 

  • Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–553

    Article  CAS  Google Scholar 

  • Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  • Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407:2093–2101

    Article  CAS  Google Scholar 

  • Coronado JM, Maira AJ, Conesa JC, Yeung KL, Augugliaro V, Soria J (2001) EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 17:5368–5374

    Article  CAS  Google Scholar 

  • Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286

    Article  CAS  Google Scholar 

  • Zhang H, Sun J, Guo L (2016) UV irradiation mediated aggregation of TiO2 nanoparticles in the simulated aquatic system. NanoImpact 3–4:75–80

    Article  Google Scholar 

  • Soria J, Sanz J, Sobrados I, Coronado J, Hernández-Alonso M, Fresno F (2010) Water-hydroxyl interactions on small anatase nanoparticles prepared by the hydrothermal route. J Phys Chem C 114:16534–16540

    Article  CAS  Google Scholar 

  • Syafei AD, Lin CF, Wu CH (2008) Removal of natural organic matter by ultrafiltration with TiO2-coated membrane under UV irradiation. J Colloid Interface Sci 323:112–119

    Article  CAS  Google Scholar 

  • Leong S, Low ZX, Liu Q, Hapgood K, Zhang X, Wang H (1988) Preparation of supported photocatalytic membrane from mesoporous titania spheres for humic acid removal from wastewater. Asia-Pac J Chem Eng 11:611–619

    Article  Google Scholar 

  • Degen A, Kosec M (2000) Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc 20:667–673

    Article  CAS  Google Scholar 

  • Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    Article  CAS  Google Scholar 

  • Chen K, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309:126–134

    Article  CAS  Google Scholar 

  • Omar FM, Aziz HA (2014) Stoll Serge. Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsorption of Suwannee River humic acid. Sci Total Environ 468–469:195–201

    Article  Google Scholar 

  • Isaacson CW, Bouchard DC (2010) Effects of humic acid and sunlight on the generation and aggregation state of aqu/C60 nanoparticles. Environ Sci Technol 44:8971–8976

    Article  CAS  Google Scholar 

  • Domingos RF, Peyrot C, Wilkinson KJ (2010) Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate. Environ Chem 7:61–66

    Article  CAS  Google Scholar 

  • Tan L, Tan X, Mei H, Ai Y, Sun L, Zhao G, Hayat T, Alsaedi A, Chen C, Wang X (2018) Coagulation behavior of humic acid in aqueous solutions containing Cs+, Sr2+ and Eu3+: DLS, EEM and MD simulations. Environ Pollut 236:835–843

    Article  CAS  Google Scholar 

  • Zhu M, Wang H, Keller AA, Wang T, Li F (2014) The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Sci Total Environ 487:375–380

    Article  CAS  Google Scholar 

  • Zhang L, Li M, Chen J, Li C (2006) UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B 110:927–935

    Article  CAS  Google Scholar 

  • Ivanda M, Musi S, Popovi S, Goti ML (1999) XRD, Raman and FT-IR spectroscopic observations of nanosized TiO2 synthesized by Sol-Gel method based on an esterification reaction. J Mol Struct 480–481:645–649

    Article  Google Scholar 

  • Kim SY, Duin ACTV, Kubicki JD (2013) Molecular dynamic simulations of the interactions between TiO2 nanoparticles and water with Na+ and Cl-, methanol, and formic acid using a reactive force field. J Mater Res 28:513–520

    Article  CAS  Google Scholar 

  • Wang LF, Wang LL, Ye XD, Li WW, Ren XM, Sheng GP, Yu HQ, Wang XK (2013) Coagulation kinetics of humic aggregates in mono- and di-valent electrolyte solutions. Environ Sci Technol 47:5042–5049

    Article  CAS  Google Scholar 

  • Liu S, Lim M, Fabris R, Chow C, Chiang K, Drikas M, Amal R (2008) Removal of humic acid using TiO2 photocatalytic process-fractionation and molecular weight characterization studies. Chemosphere 72:263–271

    Article  CAS  Google Scholar 

  • Li XZ, Li FB, Fan CM (2002) Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode. Water Res 36:2215–2224

    Article  CAS  Google Scholar 

  • Yigit Z, Inan H (2009) A study of the photocatalytic oxidation of humic acid on anatase and mixed-phase anatase-rutile TiO2 nanoparticles. Water Air Soil Pollut: Focus 9:237–243

    Article  CAS  Google Scholar 

  • Chen J, LeBoeuf EJ, Dai S, Gu B (2003) Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 50:639–647

    Article  CAS  Google Scholar 

  • Mobed JJ, Hemmingsen SL, Autry JL, Mcgown LB (1996) Fluorescence characterization of IHSS humic substances: total luminescence spectra with absorbance correction. Environ Sci Technol 30:3061–3065

    Article  CAS  Google Scholar 

  • Chen W, Qian C, Liu XY, Yu HQ (2014) Two-dimension correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanoparticles. Environ Sci Technol 48:11119–11126

    Article  CAS  Google Scholar 

  • Birben NC, Uyguner CS, Sen-Kavurmaci S, Gurkan YY, Turkten N, Bekbolet M (2015) Comparative evaluation of anion doped photocatalysts on the mineralization and decolorization of natural organic matter. Catal Today 240:125–131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the technical assistance from Huaiyin Institute of Technology.

Funding

This work is financially supported by the Fundamental Research Funds for the National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization (grant no. SF201905).

Author information

Authors and Affiliations

Authors

Contributions

D.L. and C.Z. conceived the study and performed the measurements. L.T. and Z.L. analyzed the results and prepared the manuscript.

Corresponding author

Correspondence to Liqiang Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Capsule abstract

The aggregation behaviors of TiO2 nanoparticles in the presence of humic acid and UV irradiation were studied by batch, DLS, EEM, FT-IR, and Raman measurements, and the complexation between HA and TiO2 nanoparticles strongly influenced the physicochemical behavior of TiO2 nanoparticles in the natural environment.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 915 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Liu, Z., Zhou, C. et al. Combined factors influencing the surface charge and aggregation behaviors of TiO2 nanoparticles in the presence of humic acid and UV irradiation. J Nanopart Res 23, 191 (2021). https://doi.org/10.1007/s11051-021-05315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05315-0

Keywords

Navigation