Skip to main content
Log in

Metric Approach for Finding Approximate Solutions of Scheduling Problems

  • INFORMATION SCIENCE
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Metric functions are introduced for various classes of single-machine scheduling problems. It is shown how approximate solutions of NP-hard problems can be found using these functions. The metric value is determined by solving a linear programming problem with constraints being systems of linear inequalities for polynomial or pseudopolynomial solvable instances of the problem under study. In fact, the initial instance is projected onto the subspace of solvable problem instances in the introduced metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. P. Brucker and S. Knust, Complex Scheduling (Springer-Verlag, Berlin, 2011).

    MATH  Google Scholar 

  2. H. M. Wagner, “An integer linear-programming model for machine scheduling,” Naval Res. Logist. Q. 6 (2), 131–140 (1959).

    Article  MathSciNet  Google Scholar 

  3. M. H. Rothkopf, “Scheduling independent tasks on parallel processors,” Manage. Sci. 12 (5), 437–447 (1966).

    Article  MathSciNet  Google Scholar 

  4. E. Ignall and L. Schrage, “Application of the branch and bound technique to some flow-shop scheduling problems,” Oper. Res 13 (3), 400–412 (1965).

    Article  MathSciNet  Google Scholar 

  5. D. Lemtyuzhnikova and V. Leonov, “Large-scale problems with quasi-block matrices,” J. Comput. Syst. Sci. Int. 58 (4), 571–578 (2019).

    Article  Google Scholar 

  6. F. Werner, “A survey of genetic algorithms for shop scheduling problems,” in P. Siarry, Heuristics: Theory and Applications (Nova Sci., 2013), pp. 161–222.

  7. L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, “A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing,” IEEE Access 3, 2687–2699 (2015).

    Article  Google Scholar 

  8. Q. Pan, “An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling,” Eur. J. Oper. Res. 250 (3), 702–714 (2016).

    Article  MathSciNet  Google Scholar 

  9. V. Sels, J. Coelho, A. Dias, and M. Vanhoucke, “Hybrid tabu search and a truncated branch-and-bound for the unrelated parallel machine scheduling problem,” Comput. Oper. Res. 53, 107–117 (2015).

    Article  MathSciNet  Google Scholar 

  10. A. Lazarev, “Estimation of absolute error in scheduling problems of minimizing the maximum lateness,” Dokl. Math. 76, 572–574 (2007).

    Article  MathSciNet  Google Scholar 

  11. A. A. Lazarev, Scheduling Theory: Methods and Algorithms (Inst. Probl. Upr. Ross. Akad. Nauk, Moscow, 2019) [in Russian].

    Google Scholar 

  12. A. A. Lazarev and D. I. Arkhipov, “Estimation of the absolute error and polynomial solvability for a classical NP-hard scheduling problem,” Dokl. Math. 97 (3), 262–265 (2018).

    Article  MathSciNet  Google Scholar 

  13. A. A. Lazarev, P. S. Korenev, and A. A. Sologub, “Metric for minimum total tardiness problem,” Upr. Bol’shimi Sist. 57, 123–137 (2015).

    Google Scholar 

  14. A. A. Lazarev and A. G. Kvaratskheliya, “Metrics in scheduling problems,” Dokl. Math. 81 (3), 497–499 (2010).

    Article  MathSciNet  Google Scholar 

  15. J. Du and J. Y.-T. Leung, “Minimizing total tardiness on one processor is \(NP\)-hard,” Math. Oper. Res. 15, 483–495 (1990).

    Article  MathSciNet  Google Scholar 

  16. E. L. Lawler, “A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness,” Ann. Discrete Math. 1, 331–342 (1977).

    Article  MathSciNet  Google Scholar 

  17. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Optimization and approximation in deterministic sequencing and scheduling: A survey,” Ann. Discrete Math. 5, 287–326 (1979).

    Article  MathSciNet  Google Scholar 

  18. E. L. Lawler, “A fully polynomial approximation scheme for the total tardiness problem,” Oper. Res. Lett. 1 (6), 207–208 (1982).

    Article  Google Scholar 

  19. M. Y. Kovalyov, “Improving the complexities of approximation algorithms for optimization problems,” Oper. Res. Lett. 17, 85–87 (1995).

    Article  MathSciNet  Google Scholar 

  20. A. A. Lazarev and F. Werner, “Algorithms for special single machine total tardiness problem and an application to the even-odd partition problem,” Math. Comput. Model. 49, 2078–2089 (2009).

    Article  MathSciNet  Google Scholar 

  21. Ph. Baptiste, “Scheduling equal-length jobs on identical parallel machines,” Discret. Appl. Math. 103, 21–32 (2000).

    Article  MathSciNet  Google Scholar 

  22. A. A. Lazarev, R. R. Sadykov, and S. V. Sevast’yanov, “A scheme for the approximate solution of the problem \(1\,{\text{|}}\,{{r}_{j}}\,{\text{|}}\,{{L}_{{\max}}}\),” J. Appl. Ind. Math. 1, (4), 468–480 (2007).

    Article  MathSciNet  Google Scholar 

  23. A. A. Lazarev and E. R. Gafarov, Scheduling Theory: Minimization of Total Tardiness for a Single Machine (Vychisl. Tsentr im. A.A. Dorodnitsyna Ross. Akad. Nauk, Moscow, 2006) [in Russian].

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project nos. 18-31-00458, 20-58-S52006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lazarev.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, A.A., Lemtyuzhnikova, D.V. & Pravdivets, N.A. Metric Approach for Finding Approximate Solutions of Scheduling Problems. Comput. Math. and Math. Phys. 61, 1169–1180 (2021). https://doi.org/10.1134/S0965542521070125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521070125

Keywords:

Navigation