Skip to main content
Log in

Development and Validation of a Stability-Indicating RP-HPLC Method for Determination of Eprinomectin, its Degradation Products, and Butylated Hydroxytoluene in a Pour-On Finished Product

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Eprinomectin (EPM) is the active pharmaceutical ingredient (API) of the pour-on finished product. The finished product also contains propylene glycol octanoate decanoate (PGOD) as an excipient and solvent, and butylated hydroxytoluene (BHT) as an antioxidant. EPM belongs to a group of compounds known as avermectins and is commercially available as a mixture of two closely related homologues, namely, EPM B1a and EPM B1b. A stability-indicating reverse-phase high-performance liquid chromatography (RP-HPLC) method is developed and validated, which can provide data for EPM assay and estimation of its degradation products as well as the assay of BHT from the chromatogram of a single injection of the finished product sample. The new HPLC method uses a Halo-C18 column (100 mm × 4.6 mm i.d., 2.7 µm particle size) maintained at 40 °C with 100% Water (H2O) as Mobile Phase-A and Isopropanol(IPA)/Acetonitrile(ACN) (70/30, v/v) as Mobile Phase-B. Analytes are separated by a gradient elution with a total run time of 35 min. EPM and its degradation products except 8a-oxo-B1a are detected by UV at 245 nm while 8a-oxo-B1a and BHT are detected at 280 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shoop WL, Egerton JR, Eary CH et al (1996) Eprinomectin: a novel avermectin for use as a topical endectocide for cattle. Int J Parasitol 26:1237–1242. https://doi.org/10.1016/s0020-7519(96)00123-3

    Article  CAS  PubMed  Google Scholar 

  2. Holste JE, Smith LL, Hair JA et al (1997) Eprinomectin: a novel avermectin for control of lice in all classes of cattle. Vet Parasitol 73:153–161. https://doi.org/10.1016/s0304-4017(97)00063-0

    Article  CAS  PubMed  Google Scholar 

  3. Serafini S, Soares JG, Perosa CF et al (2019) Eprinomectin antiparasitic affects survival, reproduction and behavior of Folsomia candida biomarker, and its toxicity depends on the type of soil. Environ Toxicol Phar 72:103262. https://doi.org/10.1016/j.etap.2019.103262

    Article  CAS  Google Scholar 

  4. Yoon YJ, Kim E-S, Hwang Y-S, Choi C-Y (2004) Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Appl Microbiol Biot 63:626–634. https://doi.org/10.1007/s00253-003-1491-4

    Article  CAS  Google Scholar 

  5. Batiha GE-S, Alqahtani A, Ilesanmi OB et al (2020) Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects. Pharm 13:196. https://doi.org/10.3390/ph13080196

    Article  CAS  Google Scholar 

  6. Academy MSA of VM and BISMV, Dzhafarov MK, Vasilevich FI, et al (2016) Derivatives of 16-membered macrocyclic lactoneS: antiparasitic properties and interaction with gabaa receptors. Sel’skokhozyaistvennaya Biologiya 51:875–882. https://doi.org/10.15389/agrobiology.2016.6.875eng

  7. Tang M, Hu X, Wang Y et al (2020) Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol Res 163:105207. https://doi.org/10.1016/j.phrs.2020.105207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elhawary NM, Sorour ShSGH, El-Abasy MA et al (2017) A trial of doramectin injection and ivermectin spot-on for treatment of rabbits artificially infested with the ear mite “Psoroptes cuniculi.” Pol J Vet Sci 20:521–525. https://doi.org/10.1515/pjvs-2017-0063

    Article  CAS  PubMed  Google Scholar 

  9. Nieman CC, Floate KD, Düring R-A et al (2018) Eprinomectin from a sustained release formulation adversely affected dung breeding insects. PLoS One 13:e0201074. https://doi.org/10.1371/journal.pone.0201074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andresen CE, Loy DD, Brick TA et al (2018) Effects of extended-release eprinomectin on productivity measures in cow–calf systems and subsequent feedlot performance and carcass characteristics of calves. Transl Animal Sci 3:txy115. https://doi.org/10.1093/tas/txy115

    Article  Google Scholar 

  11. Lamassiaude N, Courtot E, Corset A, et al (2020) Functional investigation of conserved glutamate receptor subunits reveals a new mode of action of macrocyclic lactones in nematodes. Biorxiv 2020.12.17.423223. https://doi.org/10.1101/2020.12.17.423223

  12. Junco M, Iglesias LE, Sagués MF et al (2021) Effect of macrocyclic lactones on nontarget coprophilic organisms: a review. Parasitol Res 120:773–783. https://doi.org/10.1007/s00436-021-07064-4

    Article  CAS  PubMed  Google Scholar 

  13. Wolstenholme AJ, Rogers AT (2005) Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 131:S85–S95. https://doi.org/10.1017/s0031182005008218

    Article  CAS  PubMed  Google Scholar 

  14. Yates DM, Wolstenholme AJ (2004) An ivermectin-sensitive glutamate-gated chloride channel subunit from Dirofilaria immitis. Int J Parasitol 34:1075–1081. https://doi.org/10.1016/j.ijpara.2004.04.010

    Article  CAS  PubMed  Google Scholar 

  15. Chen I, Kubo Y (2018) Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin. J Physiology 596:1833–1845. https://doi.org/10.1113/jp275236

    Article  CAS  Google Scholar 

  16. Hamel D, Bosco A, Rinaldi L et al (2017) Eprinomectin pour-on (EPRINEX® Pour-on, Merial): efficacy against gastrointestinal and pulmonary nematodes and pharmacokinetics in sheep. Bmc Vet Res 13:148. https://doi.org/10.1186/s12917-017-1075-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamel D, Visser M, Mayr S et al (2018) Eprinomectin pour-on: prevention of gastrointestinal and pulmonary nematode infections in sheep. Vet Parasitol 264:42–46. https://doi.org/10.1016/j.vetpar.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  18. USP43–NF38-1660 (2020) United States Pharmacopeial Convention Inc., Rockville, MD, USA

  19. Awasthi A, Razzak M, Al-Kassas R et al (2012) Separation and identification of degradation products in eprinomectin formulation using LC, LTQ FT-MS, H/D exchange, and NMR. J Pharmaceut Biomed 63:62–73. https://doi.org/10.1016/j.jpba.2011.12.030

    Article  CAS  Google Scholar 

  20. Wang Y, Sun J, Zhang T et al (2011) Enhanced oral bioavailability of tacrolimus in rats by self-microemulsifying drug delivery systems. Drug Dev Ind Pharm 37:1225–1230. https://doi.org/10.3109/03639045.2011.565774

    Article  CAS  PubMed  Google Scholar 

  21. Salunkhe SS, Bhatia NM, Bhatia MS (2014) Implications of formulation design on lipid-based nanostructured carrier system for drug delivery to brain. Drug Deliv 23:1–11. https://doi.org/10.3109/10717544.2014.943337

    Article  CAS  Google Scholar 

  22. Johnson W (1999) Final Report on the Safety Assessment of Propylene Glycol (PG) Dicaprylate, PG Dicaprylate/Dicaprate, PG Dicocoate, PG Dipelargonate, PG Isostearate, PG Laurate, PG Myristate, PG Oleate, PG Oleate SE, PG Dioleate, PG Dicaprate, PG Diisostearate, and PG Dilaurate. Int J Toxicol 18:35–52. https://doi.org/10.1177/109158189901800207

    Article  CAS  Google Scholar 

  23. Mahjour M, Mauser BE, Rashidbaigi ZA, Fawzi MB (1993) Effects of propylene glycol diesters of caprylic and capric acids (Miglyol® 840) and ethanol binary systems on in vitro skin permeation of drugs. Int J Pharmaceut 95:161–169. https://doi.org/10.1016/0378-5173(93)90403-3

    Article  CAS  Google Scholar 

  24. Gritti F, Leonardis I, Shock D et al (2010) Performance of columns packed with the new shell particles, Kinetex-C18. J Chromatogr A 1217:1589–1603. https://doi.org/10.1016/j.chroma.2009.12.079

    Article  CAS  PubMed  Google Scholar 

  25. Kirkland JJ, Schuster SA, Johnson WL, Boyes BE (2013) Fused-core particle technology in high-performance liquid chromatography: an overview. J Pharm Anal 3:303–312. https://doi.org/10.1016/j.jpha.2013.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cunliffe JM, Maloney TD (2007) Fused-core particle technology as an alternative to sub-2-μm particles to achieve high separation efficiency with low backpressure. J Sep Sci 30:3104–3109. https://doi.org/10.1002/jssc.200700260

    Article  CAS  PubMed  Google Scholar 

  27. ICH-Guidelines Q2 (R1) (2005) Validation of analytical procedures: text and methodology. https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf. Accessed 21 Oct 2019

Download references

Acknowledgements

The authors would like to thank members of Global Pharmaceutical Technical Support (GPTS) team from Boehringer-Ingelheim Animal Health (BIAH) and members of GPTS team in Pharmaron for their support during this study. They thank to Dr. Sarju Adhikari of GPTS for providing valuable suggestions and comments during manuscript preparation.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. This work was supported by Boehringer-Ingelheim Animal Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent for Publication

The authors’ affiliated company, Boehringer Ingelheim Animal Health, approved the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padivitage, N., Wang, L., Wimalasinghe, R.M. et al. Development and Validation of a Stability-Indicating RP-HPLC Method for Determination of Eprinomectin, its Degradation Products, and Butylated Hydroxytoluene in a Pour-On Finished Product. Chromatographia 84, 949–965 (2021). https://doi.org/10.1007/s10337-021-04082-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04082-3

Keywords

Navigation