Skip to main content
Log in

Trade-off between Squashed Entanglement and Concurrence in Bipartite Quantum States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this article, we investigate the unitary dynamics of squashed entanglement and concurrence measures in Werner state and maximally entangled mixed states (MEMS) under two different Hamiltonians. The aim of the present study is twofold. The first part of the study deals with the dynamics under Heisenberg Hamiltonian and the second part deals under bi-linear bi-quadratic Hamiltonian which is the extension of the first Hamiltonian. In both parts, we investigate the dynamical trade-off and equilibrium points for squashed entanglement and concurrence. During the study, we also found the results of entanglement sudden death (ESD) with Heisenberg Hamiltonian in Werner state under concurrence measure. In the second part, we investigate the special result for the bi-linear bi-quadratic Hamiltonian which does not disturb squashed entanglement and concurrence in both the states and exhibits the robust character for both of the states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In computer science the problems whose domain is very large becomes very difficult to solve; such problems are categorized as NP-Complete/NP-Hard.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Preskil, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  3. Dyakonov, M.I.: Will we Ever have a Quantum Computer? Springer Briefs in Physics Springer, Berlin (2020)

    Book  Google Scholar 

  4. Keimer, B., Moore, J.E.: The physics of quantum materials. Nat. Phys. 13, 1045 (2016)

    Article  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bouwmeester, D., Pan, J., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  8. Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Crypto. 5, 3–28 (1992)

    Article  Google Scholar 

  11. Sharma, K.K., Gerdt, V.P.: entanglement in bipartite quantum states Quantum information scrambling. Quantum Inf. Process. 20, 195 (2021)

    Article  ADS  Google Scholar 

  12. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  14. Ollivier, H., Zurek, W.H., Quantum siscord, A.: Measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  15. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for non zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  16. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. arXiv:1003.3207v2 (2010)

  17. Brandao, F., Christandl, M., Yard, J.: Faithful squashed entanglement. Commun. Math. Phys. 306(3), 805 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  18. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  19. Munro, W.J., James, D.F.V., White, A.G., Kwiat, P.G.: Maximizing the entanglement of two mixed qubits. Phys. Rev. A 64(R), 030302 (2001)

    Article  ADS  Google Scholar 

  20. Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  21. Sharma, K.K., Pandey, S.N.: Influence of Dzyaloshinshkii–Moriya interaction on quantum correlations in two-qubit Werner states and MEMS. Quantum Inf. Process. 14, 1361 (2015)

    Article  ADS  Google Scholar 

  22. Bonner, J.C.: Generalized Heisenberg quantum spin chains (invited). J. Appl. Phys. 61, 3941 (1987)

    Article  ADS  Google Scholar 

  23. Wang, X., Li, H., Sun, Z., Li, Y.: Entanglement in spin-1 Heisenberg chains. J. Phys. A: Math. Gen. 38, 8703 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. Da Silva, S.L.L.: Entanglement of spin-1/2 Heisenberg antiferromagnetic quantum spin chains. arXiv:1605.04373 (2016)

  25. Läuchli, A., Schmid, G., Trebst, S.: Spin nematics correlations in bilinear-biquadratic S = 1 spin chains. Phys. Rev. B 74, 144426 (2006)

    Article  ADS  Google Scholar 

  26. Niesen, I., Corboz, P.: Ground-state study of the spin-1 bilinear-biquadratic Heisenberg model on the triangular lattice using tensor networks. Phys. Rev. B 97, 245146 (2018)

    Article  ADS  Google Scholar 

  27. Knuth, Donald: Postscript about NP-hard problems. ACM SIGACT News. 6s, 15 (1974)

    Article  Google Scholar 

  28. Huang, Y.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  29. Salberger, O., Korepin, V.: Entangled spin chain. Rev. Math. Phys. 29(10), 1750031 (2017)

    Article  MathSciNet  Google Scholar 

  30. Gong, S.S., Su, G.: Thermal entanglement in one-dimensional Heisenberg quantum spin chains under magnetic fields. Phys. Rev. A 80, 012323 (2009)

    Article  ADS  Google Scholar 

  31. Christandl, M., Winter, A.: Squashed entanglement: an additive entanglement measure. J. Math. Phys. 45, 829 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  32. Peters, N.A., Altepeter, J.B., Branning, D., Jeffrey, E.R., Wei, T., Kwiat, P.G.: Maximally entangled mixed states: Creation and concentration. Phys. Rev. Lett. 92, 133601 (2004)

    Article  ADS  Google Scholar 

  33. Sharma, K.K., Awasthi, S.K., Pandey, S.N.: Entanglement sudden death and birth in qubit-qutrit systems under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 12, 3437 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Sharma, K.K., Pandey, S.N.: Entanglement Dynamics in two parameter qubit-qutrit states under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 13, 2017 (2014)

    Article  ADS  Google Scholar 

  35. Sharma, K.K., Pandey, S.N.: Influence of Dzyaloshinshkii-Moriya interaction on quantum correlations in two qubit Werner states and MEMS. Quantum Info. Process. 14, 1361 (2015)

    Article  ADS  Google Scholar 

  36. Sharma, K.K., Pandey, S.N.: Dzyaloshinshkii-moriya interaction as an agent to free the bound entangled states. Quantum Info. Process. 15, 1539 (2016)

    Article  ADS  Google Scholar 

  37. Sharma, K.K., Pandey, S.N.: Dynamics of entanglement in two parameter qubit-qutrit states with x-component of DM interaction. Commun. Theor. Phys. 65, 278 (2016)

    Article  ADS  Google Scholar 

  38. Sharma, K.K.: Herring-Flicker coupling and thermal quantum correlations in bipartite system. Quantum Info. Process. 17, 321 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Sharma, K.K., Pandey, S.N.: Robustness of Greenberger-Horne-Zeilinger and W states against Dzyaloshinskii-Moriya interaction. Quantum Info. Process. 15(12), 4995 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. Sharma, K.K., Gerdt Vladimir, P.: Entanglement sudden death and birth effects in two qubits maximally entangled mixed states under quantum channels. Int. J. Theor Phys. 59, 403 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil K. Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.K., Sinha, S. Trade-off between Squashed Entanglement and Concurrence in Bipartite Quantum States. Int J Theor Phys 60, 3651–3665 (2021). https://doi.org/10.1007/s10773-021-04936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04936-4

Keywords

Navigation