Skip to main content

Advertisement

Log in

Genomic insights into growth and development of bamboos: what have we learnt and what more to discover?

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

In this review, genes and transcripts that play important roles in the vegetative and reproductive development of bamboos along with their stress responses have been discussed and a few yet unresolved research questions have been identified.

Abstract

Bamboos, a member of the family Poaceae, sub-family Bambusoideae hosts approximately 1670 species within 125 genera and are distributed in Asia, America and Africa. Bamboos are used as food, fodder, medicine and also for construction, furniture and handicrafts. Bamboos also have potential as bioenergy plants for their fast shoot growth, attaining a final height of 5–20 m within only 2–4 months. They are less prone to diseases, can grow under a variety of environmental conditions, and can withstand a wide range of abiotic stresses. For fundamental research, the plant group can serve as a model to address interesting evolutionary and developmental biological questions related to its unusually extended flowering time and its expansion of gene families as a result of polyploidization. However, genomic, transcriptomic and proteomic research progress to date does not reflect the utility and research opportunities of this species group, although the first bamboo genome sequences of Phyllostachys heterocycla (= Phyllostachys edulis/moso bamboo) are available. The objective of this article is to review the current state of bamboo genomic, transcriptomic and proteomic research, and to highlight important research directions that can be pursued using these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Austin AT, Marchesini VA (2012) Gregarious flowering and death of understorey bamboo slow litter decomposition and nitrogen turnover in a southern temperate forest in Patagonia, Argentina. Funct Ecol 26:265–273

    Google Scholar 

  • Banerjee S, Basak M, Dutta S, Chanda C, Dey A, Das M (2021) Ethnobamboology: Traditional uses of bamboos and opportunities to exploit genomic resources for better. In: Ahmad Z, Ding Y, Shahzad A (ed) exploitation. “Biotechnological Advances in Bamboo: The “Green Gold” on the Earth”. Springer, Berlin

  • Behari B (2006) Status of Bamboo in India. Compilation of papers for preparation of national status report on forests and forestry in India. Survey and Utilization Division, Ministry of Environment and Forest 109–120

  • Bessho-Uehara K, Erris Nugroho J, Kondo H, Angeles-Shim RB, Ashikari M (2018) Sucrose affects the developmental transition of rhizomes in Oryza longistaminata. J Plant Res 131:693–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandawat A, Singh G, Seth R, Singh P, Sharma RK (2017) Genome-Wide Transcriptional profiling to elucidate key candidates involved in bud burst and rattling growth in a subtropical bamboo (Dendrocalamus hamiltonii). Front Plant Sci 7:2038

    PubMed  PubMed Central  Google Scholar 

  • Bhardwaj S, Sharma R, Kumar R (2014) An Alternative to Steel: Bamboo-A review (New Advances). J Eng Comput Appl Sci 3:10

    Google Scholar 

  • Bhattacharya S, Das M, Bar R, Pal A (2006) Morphological and molecular characterization of Bambusa tulda with a note on flowering. Ann Bot 98:529–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya S, Ghosh JS, Das M, Pal A (2009) Morphological and molecular characterization of Thamnocalamus spathiflorus subsp. spathiflorus at population level. Plant Syst Evol 282:13–20

    Google Scholar 

  • Biswas P, Chakraborty S, Dutta S, Pal A, Das M (2016) Bamboo flowering from the perspective of comparative genomics and transcriptomics. Front Plant Sci 7:1900

    PubMed  PubMed Central  Google Scholar 

  • Biswas S (2000) Bamboo diversity and conservation in India. In: Rao, AN, Rao RV (ed) “Bamboo conservation, diversity, ecogeography, germplasm, resource utilization and taxonomy”, Proceed. of training course cum workshop 10–17th May 1998, Kunming and Xishuangbanna, Yunnan, China, IPGRI-APO Serdang, Malaysia, pp 164–175

  • Chatterji RN, Raizada MB (1963) Culm-sheaths as aid to identification of bamboos. Phys Med Biol 57:6519–6540

    Google Scholar 

  • Chen CY, Hsieh MH, Yang CC, Lin CS, Wang AY (2010) Analysis of the cellulose synthase genes associated with primary cell wall synthesis in Bambusa oldhamii. Phytochem 71:1270–1279

    CAS  Google Scholar 

  • Chen S, Jia J, Cheng L, Zhao P, Qi D, Yang W, Liu H, Dong X, Li X, Liu G (2019) Transcriptomic analysis reveals a comprehensive calcium- and phytohormone-dominated signaling response in Leymus chinensis self-incompatibility. Int J Mol Sci 20:2356

    CAS  PubMed Central  Google Scholar 

  • Chen M, Ju Y, Ahmad Z, Yin Z, Ding Y, Que F, Yan J, Chu J, Wei Q (2021) Multi-analysis of sheath senescence provides new insights into bamboo shoot development at the fast growth stage. Tree Physiol 41:491–507

    CAS  PubMed  Google Scholar 

  • Chen LN, Cui YZ, Wong KM, Li DZ, Yang HQ (2017) Breeding system and pollination of two closely related bamboo species. Ann Bot Plants 9:plx021

    Google Scholar 

  • Cheng Z, Ge W, Li L, Hou D, Ma Y, Liu J, Bai Q, Li X, Mu S, Gao J (2017) Analysis of MADS-box gene family reveals conservation in floral organ ABCDE model of moso bamboo (Phyllostachys edulis). Front Plant Sci 8:656

    PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Hou D, Ge W, Li X, Xie L, Zheng H, Cai M, Liu J, Gao J (2020) Integrated mRNA, MicroRNA transcriptome and degradome analyses provide insights into stamen development in moso bamboo. Plant Cell Phys 61:76–87

    CAS  Google Scholar 

  • Chiu WB, Lin CH, Chang CJ, Hsieh MH, Wang AY (2006) Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. New Phytol 170:53–63

    CAS  PubMed  Google Scholar 

  • Clark LG, Zhang W, Wendel JF (1995) A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst Bot 20:436–460

    Google Scholar 

  • Cui K, Wang H, Liao S, Tang Q, Li L, Cui Y, He Y (2016) Transcriptome sequencing and analysis for culm elongation of the world’s largest bamboo (Dendrocalamus sinicus). PLoS ONE 11:e0157362

    PubMed  PubMed Central  Google Scholar 

  • Das M, Pal A (2005a) Clonal propagation and production of genetically uniform regenerants from axillary meristems of adult bamboo. J Plant Biochem Biotechnol 14:185–188

    Google Scholar 

  • Das M, Pal A (2005b) In vitro regeneration of Bambusa balcooa Roxb.: factors affecting changes of morphogenetic competence in the axillary buds. Plant Cell Tissue Organ Cult 81:109–112

    CAS  Google Scholar 

  • Das M, Bhattacharya S, Singh P, Filgueiras T, Pal A (2008) Bamboo taxonomy and diversity in the era of molecular markers. Adv Bot Res 47:225–268

    CAS  Google Scholar 

  • Das M, Haberer G, Panda A, Das Laha S, Ghosh TC, Schaffner AR (2016) Expression pattern similarities support the prediction of orthologs retaining common functions after gene duplication events. Plant Physiol 171:2343–2357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das Laha S, Dutta S, Schäffner AR, Das M (2020) Gene duplication and stress genomics in Brassicas: current understanding and future prospects for crop improvement. J Plant Physiol 255:153293

    CAS  PubMed  Google Scholar 

  • Dasgupta MG, Dev SA, Parveen ABM, Sarath P, Sreekumar VB (2021) Draft genome of Korthalsia laciniosa (Griff.) Mart., a climbing rattan elucidates its phylogenetic position. Genomics 113:2010–2022

    Google Scholar 

  • Ding M, Wang K (2018) Determination of cyanide in bamboo shoots by microdiffusion combined with ion chromatography-pulsed amperometric detection. Royal Soc Open Sci 5:172128

    Google Scholar 

  • Dutta S, Biswas P, Chakraborty S, Mitra D, Pal A, Das M (2018) Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo. BMC Genom 19:190

    Google Scholar 

  • Dutta S, Deb A, Biswas P, Chakraborty S, Guha S, Mitra D, Geist B, Schäffner AR, Das M (2021) Identification and functional characterization of two bamboo FD gene homologs having contrasting effects on shoot growth and flowering. Sci Rep 11:7849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fierro-Monti I, Mathews MB (2000) Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci 25:241–246

    CAS  PubMed  Google Scholar 

  • Gamble JS (1896) The Bambuseae of British India. Calcutta, Bengal Secretariat Press, pp133

  • Gamuyao R, Nagai K, Ayano M, Mori Y, Minami A, Kojima M, Suzuki T, Sakakibara H, Higashiyama T, Ashikari M, Reuscher S (2017) Hormone distribution and transcriptome profiles in bamboo shoots provide insights on bamboo stem emergence and growth. Plant Cell Physiol 58:702–716

    CAS  PubMed  Google Scholar 

  • Gao J, Ge W, Zhang Y, Cheng Z, Li L, Hou D, Hou C (2015) Identification and characterization of microRNAs at different flowering developmental stages in moso bamboo (Phyllostachys edulis) by high-throughput sequencing. Mol Genet Genom 290:2335–2353

    CAS  Google Scholar 

  • Gao H, Huang R, Liu J, Gao Z, Zhao H, Li X (2019) Genome-wide identification of Trihelix genes in Moso bamboo (Phyllostachys edulis) and their expression in response to abiotic stress. J Plant Growth Regul 38:1127–1140

    CAS  Google Scholar 

  • Gao J, Zhang Y, Zhang C, Qi F, Li X, Mu S, Peng Z (2014) Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-Seq analysis. PLoS ONE 9:e98910

    PubMed  PubMed Central  Google Scholar 

  • Ge W, Zhang Y, Cheng Z, Hou D, Li X, Gao J (2017) Main regulatory pathways, key genes and microRNAs involved in flower formation and development of moso bamboo (Phyllostachys edulis). Plant Biotechnol J 15:82–96

    CAS  PubMed  Google Scholar 

  • Gould FW (1968) Grass systematic. New York, McGraw-Hill, pp382

  • Gui YJ, Zhou Y, Wang Y, Wang S, Wang SY, Hu Y, Bo SP, Chen H, Zhou CP, Ma NX, Zhang TZ, Fan LJ (2010) Insights into the bamboo genome:syntenic relationships to rice and sorghum. J Integr Plant Biol 52:1008–1015

    CAS  PubMed  Google Scholar 

  • Guo X, Guan Y, Xiao G, Zai-en X, Haiyun Y, Fang W (2016) Isolation and characterization of an Indeterminate1 gene, BmID1, from bamboo (Bambusa multiplex). J Plant Biochem Biotechnol 25:30–39

    Google Scholar 

  • Guo ZH, Ma PF, Yang GQ, Hu JY, Liu YL, Xia EH, Zhong MC, Zhao L, Sun GL, Xu YX, Zhao YJ, Zhang YC, Zhang YX, Zhang XM, Zhou MY, Guo Y, Guo C, Liu JX, Ye XY, Chen YM, Yang Y, Han B, Lin CS, Lu Y, Li DZ (2019a) Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol Plant 12:1353–1365

    CAS  PubMed  Google Scholar 

  • Guo L, Sun X, Li Z, Wang Y, Fei Z, Jiao C, Feng J, Cui D, Feng X, Ding Y, Zhang C, Wei Q (2019b) Morphological dissection and cellular and transcriptome characterizations of bamboo pith cavity formation reveal a pivotal role of genes related to programmed cell death. Plant Biotechnol J 17:982–997

    CAS  PubMed  Google Scholar 

  • Hackauf B, Wehling P (2005) Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110:832–845

    CAS  PubMed  Google Scholar 

  • He YP, Liu JQ (2003) A review of recent advances in the studies of plant breeding system. Acta Phytoecol Sin 27:151–163

    CAS  Google Scholar 

  • He XQ, Suzuki K, Kitamura S, Lin JX, Cui KM, Itoh T (2002) Toward understanding the different function of two types of parenchyma cells in bamboo culms. Plant Cell Physiol 43:186–195

    CAS  PubMed  Google Scholar 

  • He CY, Cui K, Zhang JG, Duan AG, Zeng YF (2013) Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo. BMC Plant Biol 13:119

    PubMed  PubMed Central  Google Scholar 

  • Hou D, Cheng Z, Xie L, Li X, Li J, Mu S, Gao J (2018) The R2R3MYB gene family in Phyllostachys edulis: genome-wide analysis and identification of stress or development-related R2R3MYBs. Front Plant Sci 9:738

    PubMed  PubMed Central  Google Scholar 

  • Hu C, Jin A, Zhang Z (1996) Change of endohormone in mixed bud on Lei bamboo rhizome during differentiation. J Zhejiang Forestry College 13:1–4

    Google Scholar 

  • Hu C, Zhang Y, Kitts DD (2000) Evaluation of antioxidant and pro-oxidant activities of bamboo Phyllostachys nigra var, henonis leaf extract in vitro. J Agric Food Chem 48:3170–3176

    CAS  PubMed  Google Scholar 

  • Huang H (2010) Ex Situ Plant Conservation Bgjournal 7:14–19

    CAS  Google Scholar 

  • Huang Y, Liao Q, Hu S, Cao Y, Xu G, Long Z, Lu X (2018) Molecular cloning and expression analysis of seven sucrose synthase genes in bamboo (Bambusa emeiensis): investigation of possible roles in the regulation of cellulose biosynthesis and response to hormones. Biotechnol Biotechnol Equip 32:316–323

    CAS  Google Scholar 

  • Huang Z, Jin SH, Guo HD, Zhong XJ, He J, Li X, Jiang MY, Yu XF, Long H, Ma MD, Chen QB (2016) Genome-wide identification and characterization of TIFY family genes in Moso bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses. Peer J 4:e2620

    PubMed  PubMed Central  Google Scholar 

  • Hui C, Liang N, Yang XY, Chen F (2014) The characteristics of bamboo germplasm resources and its conservation from Yunnan. China Appl Mech Mater 522–524:1098–1101. https://doi.org/10.4028/www.scientific.net/AMM.522-524.1098

    Article  Google Scholar 

  • Hui CM (1999) Germplasm conservation and seed handling. In: Rao AN, Rao RV (ed) Bamboo – Conservation, diversity, eco-geography, germplasm, resources utilization and taxonomy. Rome: International Plant Genetic Resources Institute

  • Isagi Y, Shimada K, Kushima H, Tanaka N, Nagao A, Ishikawa T, OnoDera H, Watanabe S (2004) Clonal structure and flowering traits of a bamboo [Phyllostachys pubescens (Mazel) Ohwi] stand grown from a simultaneous flowering as revealed by AFLP analysis. Mol Ecol 13:2017–2021

    CAS  PubMed  Google Scholar 

  • Janzen DH (1976) Why bamboos wait so long to flower. Ann Rev Ecol Syst 7:347–391

    Google Scholar 

  • Jiang W, Bai T, Dai H, Wei Q, Zhang W, Ding Y (2017) Microsatellite markers revealed moderate genetic diversity and population differentiation of moso bamboo (Phyllostachys edulis)—a primarily asexual reproduction species in China. Tree Genet Genom 13:130

    Google Scholar 

  • Jiao Y, Hu Q, Zhu Y, Zhu L, Ma T, Zeng H, Zang Q, Li X, Lin X (2019) Comparative transcriptomic analysis of the flower induction and development of the Lei bamboo (Phyllostachys violascens). BMC Bioinf 20:687

    CAS  Google Scholar 

  • Jin QY, Peng HZ, Lin EP, Li N, Huang DN, Xu YL, Hua XQ, Wang KH, Zhu TJ (2016) Identification and characterization of differentially expressed miRNAs between bamboo shoot and rhizome shoot. J Plant Biol 59:322–335

    CAS  Google Scholar 

  • Jung HJ, Nam JH, Choi J, Lee KT, Park HJ (2005) Anti-inflammatory effects of chiisanoside and chiisanogenin obtained from the leaves of Acanthopanax chiisanensis in the carrageenan-and Freund’s complete adjuvant-induced rats. J Ethno Pharmacol 97:359–367

    CAS  Google Scholar 

  • Kakeda K (2009) S locus –linked F-box gene expressed in anthers of Hordeum bulbosum. Plant Cell Rep 28:1453–1460

    CAS  PubMed  Google Scholar 

  • Kakeda K, Ibuki T, Suzuki J, Tadano H, Kurita Y, Hanai Y, Kowyama Y (2008) Molecular and genetic characterization of the S locus in Hordeum bulbosum L., a wild self-incompatible species related to cultivated barley. Mol Genet Genom 280:509–519

    CAS  Google Scholar 

  • Kao TH, Tsukamoto T (2004) The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16(Suppl):S72–S83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelchner SA (2013) Bamboo Phylogeny Group. Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Mol Phylogenet Evol 67:404–413

    CAS  PubMed  Google Scholar 

  • Kellogg EA, Watson L (1993) Phylogenetic studies of a large data set Bambusoideae, Andropogonodae, and Pooideae (Gramineae). Bot Rev 59:273–343

    Google Scholar 

  • Kellogg EA (2015) Flowering Plants. Monocots:Poaceae. New York. Springer

  • Kitamura K, Kawahara T (2011) Estimation of outcrossing rates at small-scale flowering sites of the dwarf bamboo species, Sasa cernua. J Plant Res 124:683–688

    PubMed  Google Scholar 

  • Klaas M, Yang B, Bosch M, Thorogood D, Manzanares C, Armstead IP, Franklin FCH, Barth S (2011) Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann Bot 108:677–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Cheng Z, Ma Y, Bai Q, Li X, Cao Z, Wu Z, Gao J (2018) The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth. Plant Biotechnol J 16:72–85

    CAS  PubMed  Google Scholar 

  • Li S, Ramakrishnan M, Vinod KK, Kalendar R, Yrjälä K, Zhou M (2019a) Development and deployment of high-throughput retrotransposon-based markers reveal genetic diversity and population structure of Asian Bamboo. Forests 11:31

    CAS  Google Scholar 

  • Li Y, Zhang C, Yang K, Shi J, Ding Y, Gao Z (2019b) De novo sequencing of the transcriptome reveals regulators of the floral transition in Fargesia macclureana (Poaceae). BMC Genom 20:1035

    CAS  Google Scholar 

  • Li L, Yang K, Wang S, Lou Y, Zhu C, Gao Z (2020) Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10 involved in lignin biosynthesis and in response to abiotic stresses. Plant Cell Rep 1–13

  • Li W, Shi C, Li K, Zhang QJ, Tong Y, Zhang Y, Wang J, Clark L, Gao LZ (2021) Draft genome of the herbaceous bamboo Raddia distichophylla. G3 (Bethesda) 11:jkaa049

  • Liese W, Köhl M (2015) Bamboo-the plant and its uses. Springer

    Google Scholar 

  • Lin J, He X, Hu Y, Kuang T, Ceulemans R (2002) Lignification and lignin heterogeneity for various age classes of bamboo (Phyllostachys pubescens) stems. Phys Plant 114:296–302

    CAS  Google Scholar 

  • Lin CS, Lai YH, Sun CW, Liu NT, Tsay HS, Chang WC, Chen JJW (2006) Identification of ESTs differentially expressed in green and albino mutant bamboo (Bambusa edulis) by suppressive subtractive hybridization (SSH) and microarray analysis. Plant Cell Tiss Org Cult 86:169–175

    CAS  Google Scholar 

  • Lin EP, Peng HZ, Jin QY, Ding MJ, Li T, Xiao XC, Hua XQ, Wang KH, Bian HW, Han N, Zhu MY (2009) Identification and characterization of two Bamboo (Phyllostachys praecox) AP1/SQUA-like MADS-box genes during floral transition. Planta 231:109–120

    CAS  PubMed  Google Scholar 

  • Liu Z, Fei B (2013) Characteristics of Moso bamboo with chemical pretreatment, sustainable degradation of lignocellulosic biomass—techniques, applications and commercialization in Anuj K. Chandel and Silvio Silvério Da Silva, Intech Open. https://doi.org/10.5772/55379

    Article  Google Scholar 

  • Liu J, Cheng Z, Li X, Xie L, Bai Y, Peng L, Li J, Gao J (2019a) Expression analysis and regulation network identification of the CONSTANS-like gene family in Moso bamboo (Phyllostachys edulis) under photoperiod treatments. DNA Cell Biol 38:607–626

    CAS  PubMed  Google Scholar 

  • Liu Y, Wu C, Hu X, Gao H, Wang Y, Luo H, Cai S, Li G, Zheng Y, Lin C, Zhu Q (2019b) Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). Tree Physiol 40:538–556

    Google Scholar 

  • Liu M, Qiao G, Jiang J, Yang H, Xie L, Xie J, Zhu R (2012) Transcriptome sequencing and de novo analysis for Ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform. PLoS ONE 7:e46766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu BY, Wu X, Tie X, Zhang Y, Zhang Y (2005) Toxicology and safety of antioxidant of bamboo leaves, Part I: acute and sub chronic toxicity studies on antioxidant of bamboo leaves. Food Chem Toxicol 43:783–792

    CAS  PubMed  Google Scholar 

  • Ma X, Zhao H, Xu W, You Q, Yan H, Gao Z, Su Z (2018) Co-expression gene network analysis and functional module identification in bamboo growth and development. Front Genet 9:574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Zhao H, Yan H, Sheng M, Cao Y, Yang K, Xu H, Xu W, Gao Z, Su Z (2021) Refinement of bamboo genome annotations through integrative analyses of transcriptomic and epigenomic data. Computing 19:2708–2718

    CAS  Google Scholar 

  • Malik S, Biswas S, Nautiyal S, and Kumar D (2017) Phylogenetic proximity among twenty accessions of Dendrocalamus strictus unfolded by protein profiling and culm sheath descriptors. J Plant Biochem Physiol 5

  • Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang B, Studer B (2016) A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol Biol Evol 33:870–884

    CAS  PubMed  Google Scholar 

  • McClure FA (1966) The bamboos - a fresh perspective. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • McClure BA, Franklin-Tong V (2006) Gametophytic self-incompatibility: understanding the cellular mechanisms involved in “self” pollen tube inhibition. Planta 224:233–245

    CAS  PubMed  Google Scholar 

  • Mizuki I, Sato A, Matsuo A, Suyama Y, Suzuki JI, Makita A (2014) Clonal structure, seed set, and self-pollination rate in mass-flowering bamboo species during off-year flowering events. PLoS ONE 9:e105051. https://doi.org/10.1371/journal.pone.0105051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadgauda RS, John CK, Mascarenhas AF (1993) Floral biology and breeding behavior in the bamboo Dendrocalamus strictus. Tree Physiol 13:401–408

    CAS  PubMed  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    CAS  PubMed  Google Scholar 

  • Neale DB, Martínez-García PJ, De La Torre AR, Montanari S, Wei X (2017) Novel insights into tree biology and genome evolution as revealed through genomics. Annu Rev Plant Biol 68:457–483

    CAS  PubMed  Google Scholar 

  • Newbigin E, Uyenoyama MK (2005) The evolutionary dynamics of self-incompatibility systems. Trend Genet 21:500–505

    CAS  Google Scholar 

  • Pan F, Wang Y, Liu H (2017) Genome-wide identification and expression analysis of SBP like transcription factor genes in Moso Bamboo (Phyllostachys edulis). BMC Genom 18:486

    Google Scholar 

  • Peng HZ, Lin EP, Sang QL, Yao S, Jin QY, Hua XQ, Zhu MY (2007) Molecular cloning, expression analyses and primary evolution studies of REV- and TB1-like genes in bamboo. Tree Physiol 27:1273–1281

    CAS  PubMed  Google Scholar 

  • Peng Z, Lu T, Li L, Liu X, Gao Z, Hu T, Yang X, Feng Q, Guan J, Weng Q, Fan D, Zhu C, Lu Y, Han B, Jiang Z (2010) Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol 10:116

    PubMed  PubMed Central  Google Scholar 

  • Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, Lu H, Hu T, Yao N, Liu K, Li Y, Fan D, Guo Y, Li W, Lu Y, Weng Q, Zhou CC, Zhang L, Huang T, Zhao Y, Zhu C, Liu X, Yang X, Wang T, Miao K, Zhuang C, Cao X, Tang W, Liu G, Liu Y, Chen J, Liu Z, Yuan L, Liu Z, Huang X, Lu T, Fei B, Ning Z, Han B, Jiang Z (2013a) The draft genome of the fast- growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45:456–461

    CAS  PubMed  Google Scholar 

  • Peng Z, Zhang C, Zhang Y (2013b) Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS ONE 8:e78944. https://doi.org/10.1371/journal.pone.0078944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohl RW, Clark LG (1992) New chromosome counts for Chusquea and Aulonemia (Poaceae: Bambusoideae). Am J Bot 79:478–480

    Google Scholar 

  • Rahman M, Parvin W, Sultana N, Tarek S (2017) Conservation of bamboo species in a mini urban ecosystem of Bangladesh. J Biodivers Conserv Bioresour Manag 3:35–42

    Google Scholar 

  • Ramakrishnan M, Zhou MB, Pan CF, Hänninen H, Tang DQ, Vinod KK (2019) Nuclear export signal (NES) of transposases affects the transposition activity of mariner-like elements Ppmar1 and Ppmar2 of moso bamboo. Mob DNA 10:35

    PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan M, Yrjälä K, Vinod KK, Sharma A, Cho J, Satheesh V, Zhou M (2020) Genetics and genomics of moso bamboo (Phyllostachys edulis): current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur 9: e229

  • Ramakrishnan M, Yrjälä K, Satheesh V, Zhou MB (2021) Bamboo Transposon Research: Current Status and Perspectives. In: Cho J (ed) Plant Transposable Elements. Methods in Molecular Biology, vol 2250, Humana, New York

  • Ramanayake SMSD, Weerawardene TE (2003) Flowering in a bamboo, Melocanna baccifera (Bambusoideae: Poaceae). Bot J Linn Soc 143:287–291

    Google Scholar 

  • Ramanayake SMSD, Yakandawala K (1998) Incidence of flowering, death and the phenology of the giant bamboo (Dendrocalamus giganteus Wall Ex Munro). Ann Bot 82:779–785

    Google Scholar 

  • Richa SML, Bala N (2006) Endogenous levels of plant growth substances in seeds of five bamboo species in relation to seed viability. Indian J Plant Physiol 11:358–363

    CAS  Google Scholar 

  • Sawarkar AD, Shrimankar DD, Kumar A, Kumar A, Singh E, Singh L, Kumar S, Kumar R (2020) Commercial clustering of sustainable bamboo species in India. Ind Crops Prod 154:112693

  • Seethalakshmi KK, Muktesh Kumar MS (1998) Bamboos in India – a compendium. Peechi, Kerala Forest Research Institute

  • Sharma R, Gupta P, Sharma V, Sood A, Mohapatra T, Ahuja PS (2008) Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo. Genome 51:91–103

    CAS  PubMed  Google Scholar 

  • Shih MC, Chou ML, Yue JJ (2014) BeMADS1 is a key to delivery MADSs into nucleus in reproductive tissues-De novo characterization of Bambusa edulis transcriptome and study of MADS genes in bamboo floral development. BMC Plant Biol 14:179

    PubMed  PubMed Central  Google Scholar 

  • Shinozuka H, Cogan NO, Smith KF, Spangenberg GC, Forster JW (2010) Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 72:343–355

    CAS  PubMed  Google Scholar 

  • Shou Y, Zhu Y, Ding Y (2020) Transcriptome analysis of lateral buds from Phyllostachys edulis rhizome during germination and early shoot stages. BMC Plant Biol 20:229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva NF, Goring DR (2001) Mechanisms of self-incompatibility in flowering plants. Cell Mol Life Sci 58:1988–2007

    CAS  PubMed  Google Scholar 

  • Soderstrom TR (1981) Some evolutionary trends in the Bambusoideae (Poaceae). Ann Missr Bot Garden 68:15–47

    Google Scholar 

  • Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Davis JI, Morrone O (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol 53:117–137

    Google Scholar 

  • Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P, Gillespie LJ, Zuloaga FO (2017) A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications. J Syst Evol 55:259–290

    Google Scholar 

  • Sun H, Li L, Lou Y, Zhao H, Gao Z (2016) Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis). Mol Biol Rep. https://doi.org/10.1007/s11033-016-3973-3

    Article  PubMed  Google Scholar 

  • Sun H, Li L, Lou Y, Zhao H, Yang Y, Wang S, Gao Z (2017) The bamboo aquaporin gene PeTIP4;1–1 confers drought and salinity tolerance in transgenic Arabidopsis. Plant Cell Rep 36:597–609. https://doi.org/10.1007/s00299-017-2106-3

    Article  CAS  PubMed  Google Scholar 

  • Sur K, Lahiri AK, Basu RN (1989) Maintenance of bamboo (Dendrocalamus) seed viability by hydration dehydration treatment. Indian J for 12:142–144

    Google Scholar 

  • Tang DQ, Lu JJ, Fang W, Zhang S, Zhou MB (2010) Development, characterization and utilization of GenBank microsatellite markers in Phyllostachys pubescens and related species. Mol Breed 25:299–311

    CAS  Google Scholar 

  • Tao GY, Ramakrishnan M, Vinod KK, Yrjälä K, Satheesh V, Cho J, Fu Y, Zhou M (2020) Multi-omics analysis of cellular pathways involved in different rapid growth stages of moso bamboo. Tree Physiol 40:1487–1508

    CAS  PubMed  Google Scholar 

  • Tardio G, Mickovski SB, Rauch HP, Fernandes JP, Acharya MS (2018) The use of bamboo for erosion control and slope stabilization: soil bioengineering works, Bamboo-current and future prospects. IntechOpen, Rijeka, Ch. https://doi.org/10.5772/intechopen.75626

    Article  Google Scholar 

  • Tian B, Chen Y, Yan Y (2005) Isolation and ectopic expression of a bamboo MADS-box gene. Chin Sci Bull 50:217–224

    CAS  Google Scholar 

  • Triplett JK, Clark LG, Fisher AE, Wen J (2014) Independent allopolyploidization events preceded speciation in the temperate and tropical woody bamboos. New Phytol 204:66–73

    PubMed  Google Scholar 

  • Van Daele I, Bockstaele E, Martens C, Roldán-Ruiz I (2008) Identification of transcribed derived fragments involved in self-incompatibility in perennial ryegrass (Lolium perenne L.) using cDNA-AFLP. Euphytica 163:67–80

    CAS  Google Scholar 

  • Waikhom SD, Louis B, Sharma CK, Kumari P, Somkuwar BG, Singh MW, Talukdar NC (2013) Grappling the high altitude for safe edible bamboo shoots with rich nutritional attributes and escaping cyanogenic toxicity. Biomed Res Int 2013:1–11

    Google Scholar 

  • Wang S (2017) Bamboo sheath-a modified branch based on the anatomical observations. Sci Rep 7:16132

    PubMed  PubMed Central  Google Scholar 

  • Wang K, Peng H, Lin E, Jin Q, Hua X, Yao S, Bian H, Han N, Pan J, Wang J, Deng M, Zhu M (2010) Identification of genes related to the development of bamboo rhizome bud. J Exp Bot 61:551–561

    CAS  PubMed  Google Scholar 

  • Wang X, Zhang X, Zhao L, Guo Z (2014) Morphology and quantitative monitoring of gene expression patterns during floral induction and early flower development in Dendrocalamus latiflorus. Int J Mol Sci 15:12074–12093

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sun X, Ding Y, Fei Z, Jiao C, Fan M, Yao B, Xin P, Chu J, Wei Q (2019) Cellular and molecular characterization of a thick-walled variant reveal a pivotal role of shoot apical meristem in transverse development of bamboo culm. J Exp Bot 70:3911–3926

    CAS  PubMed  Google Scholar 

  • Wei Q, Jiao C, Guo L, Ding Y, Cao J, Feng J, Dong X, Mao L, Sun H, Yu F, Yang G, Shi P, Ren G, Fei Z (2017) Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots. New Phytol 214:81–96

    CAS  PubMed  Google Scholar 

  • Wei Q, Jiao C, Ding Y, Gao S, Guo L, Chen M, Hu P, Xia S, Ren G, FeiZ, (2018) Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo. Tree Physiol 38:641–654

    CAS  PubMed  Google Scholar 

  • Wei Q, Guo L, Jiao C, Fei Z, Chen M, Cao J, Ding Y, Yuan O (2019) Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage. Tree Physiol 39:1201–1214

    CAS  PubMed  Google Scholar 

  • Wong KM (2004) Bamboo—the amazing grass: a guide to the diversity and study of bamboos in Southeast Asia. International Plant Genetic Resources Institute & University of Malaya, Malayasia

    Google Scholar 

  • Wu M, Liu H, Han G, Cai R, Pan F, Xiang Y (2017) A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Sci Rep 7:1–16

    Google Scholar 

  • Wu H, Lv H, Li L, Liu J, Mu S, Li X, Gao J (2015) Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in Moso bamboo (Phyllostachys edulis). PLoS One 10:e0126657

  • Wysocki WP, Ruiz-Sanchez E, Yin Y, Duvall MR (2016) The floral transcriptomes of four bamboo species (Bambusoideae; Poaceae): support for common ancestry among woody bamboos. BMC Genom 17:384

    Google Scholar 

  • Xiao G, Li B, Chen H, Chen W, Wang Z, Mao B, Gui R, Guo X (2018) Overexpression of PvCO1, a bamboo CONSTANS-LIKE gene, delays flowering by reducing expression of the FT gene in transgenic Arabidopsis. BMC Plant Biol 18:232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Zhou Q, Shan B (2010) Design and Construction of modern bamboo bridges. J Bridge Eng 15

  • Xie N, Chen L, Dong Y, Yang H (2019) Mixed mating system and variable mating patterns in tropical woody bamboos. BMC Plant Biol 19:418

    PubMed  PubMed Central  Google Scholar 

  • Xie L, Cai M, Li X, Zheng H, Xie Y, Cheng Z, Bai Y, Li J, Mu S, Gao J (2020) Overexpression of PheNAC3 from moso bamboo promotes leaf senescence and enhances abiotic stress tolerance in Arabidopsis. Peer J. https://doi.org/10.7717/peerj.8716

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu P, Mohorianu I, Yang L, Zhao H, Gao Z, Dalmay T (2014) Small RNA profile in moso bamboo root and leaf obtained by high definition adapters. PLoS One 9:103590

  • Yang B, Thorogood D, Armstead I, Franklin FCH, Barth S (2009) Identification of genes expressed during the self-incompatibility (SI) response in perennial ryegrass (Lolium perenne L.). Plant Mol Biol 70:709–723

    CAS  PubMed  Google Scholar 

  • Yang HY, Xia XW, Fang W, Fu Y, An MM, Zhou MB (2015) Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica. Genet Mol Res 14:11827–11840

    CAS  PubMed  Google Scholar 

  • Yang Z, Chen L, Kohnen MV, Xiong B, Zhen X, Liao J, Oka Y, Zhu Q, Gu L, Lin C, Liu B (2019) Identification and Characterization of the PEBP Family Genes in Moso Bamboo (Phyllostachys heterocycla). Sci Rep 9:14998. https://doi.org/10.1038/s41598-019-51278-7

  • Ye S, Chen G, Kohnen MV, Wang W, Cai C, Ding W, Wu C, Gu L, Zheng Y, Ma X, Lin C, Zhu Q (2020) Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). Plant Biotechnol J 18:1501–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yen TM, Lee JS (2011) Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecol Manag 261:995–1002

    Google Scholar 

  • Zappelini J, Souza LG, Guerra MP, Pescador R (2020) First cytomolecular characterization of three Neotropical woody bamboos (Bambusoideae, Poaceae) suggests ancient diploidized karyotypes. Acta Bot Brasilica 34:673–679

    Google Scholar 

  • Zhang Z, Hu C, Jin A (1996) Observation of the morphology and the structure of Phyllostachys praecox rhizome lateral bud developing into shoot. J Bamboo Res 15:60–66

    CAS  Google Scholar 

  • Zhang F, Wan XQ, Zhang HQ, Liu GL, Jiang MY, Pan YZ, Chen QB (2012a) The effect of cold stress on endogenous hormones and CBF1 homolog in four contrasting bamboo species. J for Res 17:72–78

    Google Scholar 

  • Zhang F, Zhu XQ, Guo YL, Wan XQ, Lin TT, Chen QB, Liu M, Liu PQ (2014) Ultrastructural changes and dynamic expressions of FAD7, Cu/Zn-SOD, and Mn-SOD in Neosinocalamus affinis under cold stress. Russian J Plant Physiol 61:760–767

    CAS  Google Scholar 

  • Zhang Y, Tang D, Lin X, Ding M, Tong Z (2018) Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering. BMC Plant Biol 18:176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Ma PF, Li DZ (2011) High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PloS one 6:e20596

  • Zhang XM, Zhao L, Larson RZ, Li DZ, Guo ZH. (2012a) De Novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 7: e42082

  • Zhao H, Chen D, Peng Z, Wang L, Gao Z (2013) Identification and characterization of microRNAs in the leaf of Ma bamboo (Dendrocalamus latiflorus) by deep sequencing. PLoS ONE 8:78755

    Google Scholar 

  • Zhao H, Yang L, Peng Z, Sun H, Yue X, Lou Y, Dong L, Wang L, Gao Z (2015) Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys. Sci Rep 5:8018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Wang S, Wang J, Chen C, Hao S, Chen L, Fei B, Han K, Li R, Shi C, Sun H, Wang S, Xu H, Yang K, Xu X, Shan X, Shi J, Feng A, Fan G, Liu X, Zhao S, Zhang C, Gao Q, Gao Z, Jiang Z (2018b) The chromosome-level genome assemblies of two rattans (Calamus simplicifolius and Daemonorops jenkinsiana). Gigascience 7:1–11

    PubMed  Google Scholar 

  • Zhao H, Wang L, Dong L, Sun H, Gao Z (2014) Discovery and comparative profiling of microRNAs in representative monopodial bamboo (Phyllostachys edulis) and sympodial bamboo (Dendrocalamus latiflorus). PLoS One 9:102375

  • Zhao H, Gao Z, Wang L, Wang J, Wang S, Fei B, Chen C, Shi C, Liu X, Zhang H, Lou Y, Chen L, Sun H, Zhou X, Wang S, Zhang C, Xu H, Li L, Yang Y, Wei Y, Gao Q, Yang H, Zhao S, Jiang Z (2018a) Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). GigaScience 7: giy115

  • Zhao H, Zhao S, International Network for Bamboo and Rattan, Fei B, Liu H, Yang H, Dai H, Wang D, Jin W, Tang F, Gao Q, Xun H, Wang Y, Qi L, Yue X, Lin S, Gu L, Li L, Zhu T, Wei Q, Su Z, Wan TBWA, Ofori DA, Muthike GM, Mengesha YM, de Castro E Silva RM, Beraldo AL, Gao Z, Liu X, Jiang Z (2017) Announcing the genome atlas of bamboo and rattan (GABR) project: promoting research in evolution and in economically and ecologically beneficial plants. Gigascience 6:1–7

    PubMed  Google Scholar 

  • Zhaohua Z, Wei J (2018) Sustainable bamboo development. Nosworthy Way, Wallingford, Oxfordshire

  • Zheng X, Lin S, Fu H, Wan Y, Ding Y (2020a) The bamboo flowering cycle sheds light on flowering diversity. Front Plant Sci 11:381

    PubMed  PubMed Central  Google Scholar 

  • Zheng W, Zhang Y, Zhang Q, Wu R, Wang X, Feng S, Chen S, Lu C, Du L (2020b) Genome-wide identification and characterization of hexokinase genes in moso bamboo (Phyllostachys edulis). Front Plant Sci 11:600

    PubMed  PubMed Central  Google Scholar 

  • Zhong H, Zhou M, Xu C, Tang DQ (2010) Diversity and evolution of Pong-like elements in Bambusoideae subfamily. Biochem Syst Ecol 38:750–758

    CAS  Google Scholar 

  • Zhou MB, Lu JJ, Zhong H, Tang KX, Tang DQ (2010) Distribution and polymorphism of Mariner-like elements in the Bambusoideae subfamily. Plant Syst Evol 289:1–11

    CAS  Google Scholar 

  • Zhou G, Meng C, Jiang P, Xu Q (2011) Review of carbon fixation in bamboo forests in China. Bot Rev 77:262–270

    Google Scholar 

  • Zhou Q, Jia J, Huang X, Yan X, Cheng L, Chen S, Li X, Peng X, Liu G (2014) The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genom 15:399

    Google Scholar 

  • Zhou M, Hu H, Liu Z, Tang D (2016) Two active bamboo mariner-like transposable elements (Ppmar1 and Ppmar2) identified as the transposon-based genetic tools for mutagenesis. Mol Breeding 36:163

    Google Scholar 

  • Zhou M, Zhu Y, Bai Y, Hänninen H, Meng X (2017) Transcriptionally active LTR retroelement-related sequences and their relationship with small RNA in moso bamboo (Phyllostachys edulis). Mol Breeding 37:132

    Google Scholar 

  • Zhou M, Liang L, Hänninen H (2018) A transposition-active Phyllostachys edulis long terminal repeat (LTR) retrotransposon. J Plant Res 131:203–210

    CAS  PubMed  Google Scholar 

  • Zhou MB, Wu JJ, Ramakrishnan M, Meng XW, Vinod KK (2019) Prospects for the study of genetic variation among moso bamboo wild-type and variants through genome resequencing. Trees 33:371–381

    CAS  Google Scholar 

  • Zhu L, Shi Y, Zang Q, Shi Q, Liu S, Wu Y, Lin X (2016) Functional analysis of PI-like gene in relation to flower development from bamboo (Bambusa oldhamii). J Genet 95:71–78

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this paper acknowledge research funding from funded by Council of Scientific and Industrial Research (CSIR), India [38(1386)/14/EMR-II], [38(1493)/19/EMR-II], Department of Biotechnology, India (BT/PR10778/PBD/16/1070/2014, BT/PR28859/FCB/125/3/2018) and FRPDF grant of Presidency University. MB acknowledges a SPM-JRF fellowship from CSIR, India [SPM-08/155(0317)/2020-EMR-I]. SD acknowledges CSIR-Direct-Senior Research Fellowship [08/155(0055)/2019-EMR-I]. SC acknowledges CSIR-Direct-Senior Research Fellowship [08/155(0090)/2020-EMR-I]. A part of the study was sponsored by the Alexander von Humboldt Foundation, Germany. We thank Prof. Amita Pal for her continuous guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Hamann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, M., Dutta, S., Biswas, S. et al. Genomic insights into growth and development of bamboos: what have we learnt and what more to discover?. Trees 35, 1771–1791 (2021). https://doi.org/10.1007/s00468-021-02197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02197-6

Keywords

Navigation