Skip to main content

Advertisement

Log in

Potential cytotoxicity of PM2.5–bound PAHs and toxic metals collected from areas with different traffic densities on human lung epithelial cells (A549)

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Laboratory and epidemiological researches have indicated that ambient air particulate matter have a plays critical role in causing diseases. The current research evaluated the chemical attributes of PM2.5 in the ambient air of the cities of Karaj and Fardis and determined its toxicological effects on human lung epithelial cells (A549). In the study city, 16 points were selected from the two high-traffic and low-traffic points for sampling. A sampling of ambient air was carried out in spring, summer, autumn, and winter 2018–19. Air sampling was performed for 24 h according to the EPA-TO/13A guidelines. To analyze of toxic metals and polycyclic aromatic hydrocarbons (PAHs), ICP-OES and GC-MS were used, respectively, and for cell toxicity analysis, an ELISA reader was used. Then from SPSS, Excel and R software were used for statistical analysis. The results of the current study indicated that the concentration of PAHs carcinogenic in the autumn season in high-traffic stations was the highest and equal to 9.3 ng/m3, and in the spring season in the low-traffic stations, it was the lowest and equal to 5.82 ng/m3. In general, during the period of study, Heavy metals including Zn, Fe, Pb, Cu, and Al had the highest concentration compared to other metals. However, Hg, Cr, As, Pb, Cu, Cd, and Zn were higher concentration in the winter and autumn seasons than in the spring and summer seasons. Cell viability measurements by using MTT showed that low-traffic and high-traffic stations had the highest toxicity in autumn season compared to other seasons. (p < 0.05). In general, high-traffic stations had the highest toxicity than low-traffic stations. The general conclusion of the present study was that PM2.5–bound PAHs and toxic metals, due to their high concentration, were toxic pollutants in air for residents of Karaj and Fardis. Also, the high concentration of PM2.5 caused the mitochondrial activity of A549 cells to stop and this stop was more significant in cold seasons and high-traffic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu X, Yu X, Mo L, Xu Y, Bao L, Lun X. Atmospheric particulate matter accumulation on trees: a comparison of boles, branches and leaves. J Clean Prod. 2019;226:349–56.

    Article  CAS  Google Scholar 

  2. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525(7569):367–71.

    Article  CAS  Google Scholar 

  3. Nabizadeh R, Yousefi M, Azimi F. Study of particle number size distributions at Azadi terminal in Tehran, comparing high-traffic and no traffic area. MethodsX. 2018;5:1549–55.

    Article  Google Scholar 

  4. Fathi Fathabadi MK, Abdolahnejad A, Teiri H, Hajizadeh Y. Spatio-seasonal variation of airborne asbestos concentration in urban areas of shiraz, Iran. Int J Occup Environ Health. 2017;23(2):143–50.

    Article  CAS  Google Scholar 

  5. Masroor K, Fanaei F, Yousefi S, Raeesi M, Abbaslou H, Shahsavani A, et al. Spatial modelling of PM2. 5 concentrations in Tehran using kriging and inverse distance weighting (IDW) methods. J Air Pollut Health. 2020;5(2):89–96.

    Google Scholar 

  6. Li S, Tan H-Y, Wang N, Zhang Z-J, Lao L, Wong C-W, Feng Y. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 2015;16(11):26087–124.

    Article  CAS  Google Scholar 

  7. Øvrevik J. Oxidative potential versus biological effects: a review on the relevance of cell-free/abiotic assays as predictors of toxicity from airborne particulate matter. Int J Mol Sci. 2019;20(19):4772.

    Article  Google Scholar 

  8. Heydari G, Taghizdeh F, Fazlzadeh M, Jafari AJ, Asadgol Z, Mehrizi EA, Moradi M, Arfaeinia H. Levels and health risk assessments of particulate matters (PM 2.5 and PM 10) in indoor/outdoor air of waterpipe cafés in Tehran, Iran. Environ Sci Pollut Res. 2019;26(7):7205–15.

    Article  CAS  Google Scholar 

  9. Masjedi MR, Taghizadeh F, Hamzehali S, Ghaffari S, Fazlzadeh M, Jafari AJ, et al. Air pollutants associated with smoking in indoor/outdoor of waterpipe cafés in Tehran, Iran: concentrations, affecting factors and health risk assessment. Sci Rep. 2019;9(1):1–11.

    Article  Google Scholar 

  10. Lo W-C, Shie R-H, Chan C-C, Lin H-H. Burden of disease attributable to ambient fine particulate matter exposure in Taiwan. J Formos Med Assoc. 2017;116(1):32–40.

    Article  CAS  Google Scholar 

  11. Zeng Q, Ni Y, Jiang G, Li G, Pan X. The short term burden of ambient particulate matters on non-accidental mortality and years of life lost: a ten-year multi-district study in Tianjin, China. Environmental pollution. 2017;220:713–9.

    Article  CAS  Google Scholar 

  12. Kermani M, Jafari AJ, Gholami M, Arfaeinia H, Shahsavani A, Fanaei F. Characterization, possible sources and health risk assessment of PM2. 5-bound Heavy Metals in the most industrial city of Iran. J Environ Health Sci Eng. 2021;19:151–163.

  13. Hajizadeh Y, Jafari N, Fanaei F, Ghanbari R, Mohammadi A, Behnami A, et al. Spatial patterns and temporal variations of traffic-related air pollutants and estimating its health effects in Isfahan city, Iran. J Environ Health Sci Eng 2021;19:781–791.

  14. Pope CA III, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc. 2006;56(6):709–42.

    Article  CAS  Google Scholar 

  15. Farrokhzadeh H, Jafari N, Sadeghi M, Talesh Alipour M, Amin MM, Abdolahnejad A. Estimation of spatial distribution of PM10, lead, and radon concentrations in Sepahanshahr, Iran using geographic information system (GIS). J Mazandaran Univ Med Sci. 2018;27(159):84–96.

    Google Scholar 

  16. Kermani M, Arfaeinia H, Masroor K, Abdolahnejad A, Fanaei F, Shahsavani A, et al. Health impacts and burden of disease attributed to long-term exposure to atmospheric PM10/PM2. 5 in Karaj, Iran: effect of meteorological factors. International Journal of Environmental Analytical Chemistry. 2020. https://doi.org/10.1080/03067319.2020.1807534

  17. Arfaeinia H, Moradi M, Sharafi K, Mahdi Esfahan N, Dobaradaran S. Evaluation of public health impacts related to urban air pollution in shiraz and Bushehr, Iran.Int J PharmTechnol. 2015;7:9811–9824.

  18. Hetland R, Cassee F, Refsnes M, Schwarze P, Låg M, Boere A, Dybing E. Release of inflammatory cytokines, cell toxicity and apoptosis in epithelial lung cells after exposure to ambient air particles of different size fractions. Toxicol in Vitro. 2004;18(2):203–12.

    Article  CAS  Google Scholar 

  19. Kim W, Jeong S-C, Shin C-Y, Song M-K, Cho Y, Lim J-H, et al. A study of cytotoxicity and genotoxicity of particulate matter (PM 2.5) in human lung epithelial cells (A549). Mol Cell Toxicol. 2018;14(2):163–72.

    Article  CAS  Google Scholar 

  20. Hajizadeh Y, Jafari N, Mohammadi A, Momtaz SM, Fanaei F, Abdolahnejad A. Concentrations and mortality due to short-and long-term exposure to PM 2.5 in a megacity of Iran (2014–2019). Environ Sci Pollut Res. 2020;27(30):38004–14.

    Article  CAS  Google Scholar 

  21. Fanaei F, Ghorbanian A, Shahsavani A, Jafari AJ, Abdolahnejad A, Kermani M. Quantification of mortality and morbidity in general population of heavily-industrialized city of Abadan: effect of long-term exposure. J Air Pollut Health. 2020;5(3):171–80.

    Google Scholar 

  22. Ghasemi FF, Dobaradaran S, Saeedi R, Nabipour I, Nazmara S, Abadi DRV, et al. Levels and ecological and health risk assessment of PM 2.5-bound heavy metals in the northern part of the Persian Gulf. Environ Sci Pollut Res. 2020;27(5):5305–13.

    Article  Google Scholar 

  23. Afroz R, Hassan MN, Ibrahim NA. Review of air pollution and health impacts in Malaysia. Environ Res. 2003;92(2):71–7.

    Article  CAS  Google Scholar 

  24. Zarasvandi A, Carranza E, Moore F, Rastmanesh F. Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). J Geochem Explor. 2011;111(3):138–51.

    Article  CAS  Google Scholar 

  25. Santamouris M, Cartalis C, Synnefa A. Local urban warming, possible impacts and a resilience plan to climate change for the historical center of Athens, Greece. Sustain Cities Soc. 2015;19:281–91.

    Article  Google Scholar 

  26. Velali E, Papachristou E, Pantazaki A, Choli-Papadopoulou T, Argyrou N, Tsourouktsoglou T, Lialiaris S, Constantinidis A, Lykidis D, Lialiaris TS, Besis A, Voutsa D, Samara C. Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter. Environ Pollut. 2016;218:1350–62.

    Article  CAS  Google Scholar 

  27. Silva RA, West JJ, Zhang Y, Anenberg SC, Lamarque J-F, Shindell DT, Collins WJ, Dalsoren S, Faluvegi G, Folberth G, Horowitz LW, Nagashima T, Naik V, Rumbold S, Skeie R, Sudo K, Takemura T, Bergmann D, Cameron-Smith P, et al. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ Res Lett. 2013;8(3):034005.

    Article  CAS  Google Scholar 

  28. Torkashvand J, Jafari AJ, Hopke PK, Shahsavani A, Hadei M, Kermani M. Airborne particulate matter in Tehran’s ambient air. J Environ Health Sci Eng. 2021;19:1179–91.

    Article  CAS  Google Scholar 

  29. Karimi H, Nikaeen M, Gholipour S, Hatamzadeh M, Hassanzadeh A, Hajizadeh Y. PM 2.5-associated bacteria in ambient air: is PM 2.5 exposure associated with the acquisition of community-acquired staphylococcal infections? J Environ Health Sci Eng. 2020;18(2):1007–13.

    Article  Google Scholar 

  30. Vuong NQ, Breznan D, Goegan P, O’Brien JS, Williams A, Karthikeyan S, Kumarathasan P, Vincent R. In vitro toxicoproteomic analysis of A549 human lung epithelial cells exposed to urban air particulate matter and its water-soluble and insoluble fractions. Particle and fibre toxicology. 2017;14(1):39.

    Article  Google Scholar 

  31. Chen Y, Luo X-S, Zhao Z, Chen Q, Wu D, Sun X, Wu L, Jin L. Summer–winter differences of PM2. 5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. Ecotoxicol Environ Saf. 2018;165:505–9.

    Article  CAS  Google Scholar 

  32. Haghnazari L, Mirzaei N, Arfaeinia H, Karimyan K, Sharafi H, Fattahi N. Speciation of as (ΙΙΙ)/as (V) and total inorganic arsenic in biological fluids using new mode of liquid-phase microextraction and electrothermal atomic absorption spectrometry. Biol Trace Elem Res. 2018;183(1):173–81.

    Article  CAS  Google Scholar 

  33. Palleschi S, Rossi B, Armiento G, Montereali MR, Nardi E, Tagliani SM, et al. Toxicity of the readily leachable fraction of urban PM2. 5 to human lung epithelial cells: role of soluble metals. Chemosphere. 2018;196:35–44.

    Article  CAS  Google Scholar 

  34. Kim K-H, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015;74:136–43.

    Article  CAS  Google Scholar 

  35. Armand L, Biola-Clier M, Bobyk L, Collin-Faure V, Diemer H, Strub J-M, Cianferani S, van Dorsselaer A, Herlin-Boime N, Rabilloud T, Carriere M. Molecular responses of alveolar epithelial A549 cells to chronic exposure to titanium dioxide nanoparticles: a proteomic view. J Proteome. 2016;134:163–73.

    Article  CAS  Google Scholar 

  36. Schiliro T, Alessandria L, Degan R, Traversi D, Gilli G. Chemical characterisation and cytotoxic effects in A549 cells of urban-air PM10 collected in Torino, Italy. Environ Toxicol Pharmacol. 2010;29(2):150–7.

    Article  CAS  Google Scholar 

  37. Jia Y-Y, Wang Q, Liu T. Toxicity research of PM2. 5 compositions in vitro. Intl J Environ Res Pub Health. 2017;14(3):232.

    Article  Google Scholar 

  38. Pavagadhi S, Betha R, Venkatesan S, Balasubramanian R, Hande MP. Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode. Environ Sci Pollut Res. 2013;20(4):2569–78.

    Article  CAS  Google Scholar 

  39. Vahidi MH, Fanaei F, Kermani M. Long-term health impact assessment of PM2. 5 and PM10: Karaj, Iran. Intl J Environ Health Eng. 2020;9(1):8.

    CAS  Google Scholar 

  40. Happo M, Markkanen A, Markkanen P, Jalava P, Kuuspalo K, Leskinen A, Sippula O, Lehtinen K, Jokiniemi J, Hirvonen MR. Seasonal variation in the toxicological properties of size-segregated indoor and outdoor air particulate matter. Toxicol in Vitro. 2013;27(5):1550–61.

    Article  CAS  Google Scholar 

  41. Cokic SM, Ghosh M, Hoet P, Godderis L, Van Meerbeek B, Van Landuyt KL. Cytotoxic and genotoxic potential of respirable fraction of composite dust on human bronchial cells. Dental Materials. 2020;36(2):270–83.

  42. Asadollahfardi G, Zangooei H, Aria SH. Predicting PM 2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City. Asian Journal of Atmospheric Environment (AJAE). 2016;10(2):67–79.

  43. Naimabadi A, Ghadiri A, Idani E, Babaei AA, Alavi N, Shirmardi M, Khodadadi A, Marzouni MB, Ankali KA, Rouhizadeh A, Goudarzi G. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the middle eastern dust (MED) storms in Ahvaz, Iran. Environ Pollut. 2016;211:316–24.

    Article  CAS  Google Scholar 

  44. Schilirò T, Bonetta S, Alessandria L, Gianotti V, Carraro E, Gilli G. PM10 in a background urban site: chemical characteristics and biological effects. Environ Toxicol Pharmacol. 2015;39(2):833–44.

    Article  Google Scholar 

  45. Hoseini M, Yunesian M, Nabizadeh R, Yaghmaeian K, Ahmadkhaniha R, Rastkari N, Parmy S, Faridi S, Rafiee A, Naddafi K. Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric particulate of Tehran, Iran. Environ Sci Pollut Res. 2016;23(2):1820–32.

    Article  CAS  Google Scholar 

  46. Dehghani S, Fararouei M, Rafiee A, Hoepner L, Oskoei V, Hoseini M. Prenatal exposure to polycyclic aromatic hydrocarbons and effects on neonatal anthropometric indices and thyroid-stimulating hormone in a middle eastern population. Chemosphere. 2022;286:131605.

    Article  CAS  Google Scholar 

  47. Yin X, Sun Z, Miao S, Yan Q, Wang Z, Shi G, Li Z, Xu W. Analysis of abrupt changes in the PM2.5 concentration in Beijing during the conversion period from the summer to winter half-year in 2006–2015. Atmos Environ. 2019;200:319–28.

    Article  CAS  Google Scholar 

  48. Deng X, Zhang F, Rui W, Long F, Wang L, Feng Z, Chen D, Ding W. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol in Vitro. 2013;27(6):1762–70.

    Article  CAS  Google Scholar 

  49. Wang J, Zhang WJ, Xiong W, Lu WH, Zheng HY, Zhou X, Yuan J. PM2.5 stimulated the release of cytokines from BEAS-2B cells through activation of IKK/NF-kappaB pathway. Hum Exp Toxicol. 2019;38(3):311–20.

    Article  CAS  Google Scholar 

  50. Song Y, Zhang Y, Li R, Chen W, Chung CKA, Cai Z. The cellular effects of PM2. 5 collected in Chinese Taiyuan and Guangzhou and their associations with polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and hydroxy-PAHs. Ecotoxicol Environ Safety. 2020;191:110225.

    Article  CAS  Google Scholar 

  51. Zhang H-H, Li Z, Liu Y, Xinag P, Cui X-Y, Ye H, et al. Physical and chemical characteristics of PM 2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. J Zhejiang Univ-Sci B. 2018;19(4):317–26.

    Article  CAS  Google Scholar 

  52. Zhang HH, Li Z, Liu Y, Xinag P, Cui XY, Ye H, Hu BL, Lou LP. Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. J Zhejiang Univ Sci B. 2018;19(4):317–26.

    Article  CAS  Google Scholar 

  53. Wang F, Guo Z, Lin T, Rose NL. Seasonal variation of carbonaceous pollutants in PM2. 5 at an urban ‘supersite’in Shanghai, China. Chemosphere. 2016;146:238–44.

    Article  CAS  Google Scholar 

  54. Sowlat MH, Naddafi K, Yunesian M, Jackson PL, Shahsavani A. Source apportionment of total suspended particulates in an arid area in southwestern Iran using positive matrix factorization. Bull Environ Contam Toxicol. 2012;88(5):735–40.

    Article  CAS  Google Scholar 

  55. Hajizadeh Y, Mokhtari M, Faraji M, Abdolahnejad A, Mohammadi A. Biomonitoring of airborne metals using tree leaves: protocol for biomonitor selection and spatial trend. MethodsX. 2019;6:1694–700.

    Article  Google Scholar 

  56. Prabhakar G, Sorooshian A, Toffol E, Arellano AF, Betterton EA. Spatiotemporal distribution of airborne particulate metals and metalloids in a populated arid region. Atmos Environ. 2014;92:339–47.

    Article  CAS  Google Scholar 

  57. Jiang N, Liu X, Wang S, Yu X, Yin S, Duan S, Wang S, Zhang R, Li S. Pollution characterization, source identification, and health risks of atmospheric-particle-bound heavy metals in PM10 and PM2. 5 at multiple sites in an emerging megacity in the central region of China. Aerosol Air Qual Res. 2019;19:247–71.

    Article  CAS  Google Scholar 

  58. Rai P, Chakraborty A, Mandariya AK, Gupta T. Composition and source apportionment of PM1 at urban site Kanpur in India using PMF coupled with CBPF. Atmos Res. 2016;178:506–20.

    Article  Google Scholar 

  59. Liu J, Chen Y, Chao S, Cao H, Zhang A, Yang Y. Emission control priority of PM2. 5-bound heavy metals in different seasons: a comprehensive analysis from health risk perspective. Sci Total Environ. 2018;644:20–30.

    Article  CAS  Google Scholar 

  60. Bi C, Chen Y, Zhao Z, Li Q, Zhou Q, Ye Z, Ge X. Characteristics, sources and health risks of toxic species (PCDD/fs, PAHs and heavy metals) in PM2. 5 during fall and winter in an industrial area. Chemosphere. 2020;238:124620.

    Article  CAS  Google Scholar 

  61. Zhang Y, Chen J, Yang H, Li R, Yu Q. Seasonal variation and potential source regions of PM2. 5-bound PAHs in the megacity Beijing, China: impact of regional transport. Environ Pollut. 2017;231:329–38.

    Article  CAS  Google Scholar 

  62. Niu X, Ho SSH, Ho KF, Huang Y, Sun J, Wang Q, Zhou Y, Zhao Z, Cao J. Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region. Environ Pollut. 2017;231(Pt 1):1075–84.

    Article  CAS  Google Scholar 

  63. Liu X, Li C, Tu H, Wu Y, Ying C, Huang Q, et al. Analysis of the effect of meteorological factors on PM2. 5-associated PAHs during autumn-winter in urban Nanchang. Aerosol Air Qual Res. 2016;16:3222–9.

    Article  CAS  Google Scholar 

  64. Lyu Y, Su S, Wang B, Zhu X, Wang X, Zeng EY, Xing B, Tao S. Seasonal and spatial variations in the chemical components and the cellular effects of particulate matter collected in northern China. Sci Total Environ. 2018;627:1627–37.

    Article  CAS  Google Scholar 

  65. Yang H-H, Lai S-O, Hsieh L-T, Hsueh H-J, Chi T-W. Profiles of PAH emission from steel and iron industries. Chemosphere. 2002;48(10):1061–74.

    Article  CAS  Google Scholar 

  66. Yang H-H, Lee W-J, Chen S-J, Lai S-O. PAH emission from various industrial stacks. J Hazard Mater. 1998;60(2):159–74.

    Article  CAS  Google Scholar 

  67. Chen Q, Luo XS, Chen Y, Zhao Z, Hong Y, Pang Y, et al. Seasonally varied cytotoxicity of organic components in PM2.5 from urban and industrial areas of a Chinese megacity. Chemosphere. 2019;230:424–31.

    Article  CAS  Google Scholar 

  68. Zhang K, Nie D, Chen M, Wu Y, Ge X, Hu J, et al. Chemical Characterization of Two Seasonal PM2.5 Samples in Nanjing and Its Toxicological Properties in Three Human Cell Lines. Environments. 2019;6(4):42.

  69. Wang S, Ye J, Soong R, Wu B, Yu L, Simpson AJ, et al. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons. Atmospheric Chemistry & Physics. 2018;18(6):3987–4003.

  70. Sanchez-Soberon F, Cuykx M, Serra N, Linares V, Belles M, Covaci A, et al. In-vitro metabolomics to evaluate toxicity of particulate matter under environmentally realistic conditions. Chemosphere. 2018;209:137–46.

    Article  CAS  Google Scholar 

  71. Chi Y, Huang Q, Lin Y, Ye G, Zhu H, Dong S. Epithelial-mesenchymal transition effect of fine particulate matter from the Yangtze River Delta region in China on human bronchial epithelial cells. J Environ Sci (China). 2018;66:155–64.

    Article  Google Scholar 

  72. Zou Y, Wu Y, Wang Y, Li Y, Jin C. Physicochemical properties, in vitro cytotoxic and genotoxic effects of PM1.0 and PM2.5 from Shanghai, China. Environ Sci Pollut Res Int. 2017;24(24):19508–16.

    Article  CAS  Google Scholar 

  73. Yang J, Huo T, Zhang X, Ma J, Wang Y, Dong F, Deng J. Oxidative stress and cell cycle arrest induced by short-term exposure to dustfall PM 2.5 in A549 cells. Environmental Science and Pollution Research. 2018;25(23):22408–19.

  74. Wang G, Zhang X, Liu X, Zheng J, Chen R, Kan H. Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol Lett. 2019;301:133–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is the result of the MSc approved thesis, research project no. 13062. Thus, the authors are thankful for the funding provided by the Iran University of Medical Sciences.

Funding

Support of this work by Iran University of Medical Sciences is gratefully acknowledged (Grant number: 97–3–2-13062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Majid Kermani or Farzad Fanaei.

Ethics declarations

Ethical approval

The authors of this article have covered all the ethical points, including non-plagiarism, duplicate publishing, data distortion, and data creation in this article. This project has been registered in the Iran University of Medical Sciences with the code of ethics of IR.IUMS.REC.1397.639.

Conflict of interest

The authors of this article declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatinia, T., Kermani, M., Farzadkia, M. et al. Potential cytotoxicity of PM2.5–bound PAHs and toxic metals collected from areas with different traffic densities on human lung epithelial cells (A549). J Environ Health Sci Engineer 19, 1701–1712 (2021). https://doi.org/10.1007/s40201-021-00724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00724-8

Keywords

Navigation