Skip to main content
Log in

Enhanced Electrochemical Performance of Hydrothermally Synthesized NiS/ZnS Composites as an Electrode for Super-Capacitors

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, nickel sulfide (NiS), zinc sulfide (ZnS), and their composites have been synthesized by using surfactant driven hydrothermal method. Synthesized materials are investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy, UV–Vis and Photoluminescence spectroscopy. XRD results have shown the presence of corresponding structural planes. Crystallite size was much smaller (15 nm) in the case of ZnS nanomaterials, whereas, composite materials have shown size comparable to NiS nanomaterials. SEM images presented morphology of star-like, spherical, and mixture of two for NiS, ZnS, and NiS/ZnS nanocomposites respectively. EDX spectrum of composite materials showed Nickel, Zinc, and Sulfur, indicating the purity of the synthesized composite. Electrochemical measurements i.e. cyclic voltammetry and galvanostatic charge–discharge were determined for all three materials. Maximum specific capacitance is obtained as 1594.68 F g−1 at a scan rate of 5 mV S−1 for NiS/ZnS composite materials whereas a charging/discharging time of 461.97 s is observed. The composite materials have shown 95.4% retention for applied for 3000 charging–discharging cycles. The favorable behavior of NiS/ZnS composites indicated their potential as an electrode material for pseudo-capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Rodgers, Nanoscience and Technology: A Collection of Reviews from Nature Journals (Nature Publishing Group and World Scientific Publishers, Singapore, 2010).

    Google Scholar 

  2. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C. P. Wong, and Z. L. Wang (2014). Nano Lett. 14, 731.

    Article  CAS  PubMed  Google Scholar 

  3. P. Yang and W. Mai (2014). Nano Energy 8, 274.

    Article  CAS  Google Scholar 

  4. Z. Zhang, Y. Zhang, K. Yang, K. Yi, Z. Zhou, A. Huang, K. Mai, and X. Lu (2015). J. Mater. Chem. A 3, 1884.

    Article  CAS  Google Scholar 

  5. M. Yu, Y. Zhang, Y. Zeng, M. S. Balogun, K. Mai, Z. Zhang, X. Lu, and Y. Tong (2014). Adv. Mater. 26, 4724.

    Article  CAS  PubMed  Google Scholar 

  6. H. Liu, Z. Liang, S. Liu, L. Zhang, H. Xia, and W. Xie (2020). Results Phys. 16, 102831.

    Article  Google Scholar 

  7. I. Shakir, Z. A. Almutairi, S. S. Shar, and A. Nafady (2020). Results Phys. 17, 103117.

    Article  Google Scholar 

  8. L. Huang, D. Chen, Y. Ding, S. Feng, Z. L. Wang, and M. Liu (2013). Nano Lett. 13, 3135.

    Article  CAS  PubMed  Google Scholar 

  9. W. Zhou, X. Cao, Z. Zeng, W. Shi, Y. Zhu, Q. Yan, H. Liu, J. Wang, and H. Zhang (2013). Energy & Environ. Sci. 6, 2216.

    Article  CAS  Google Scholar 

  10. B. De, J. Balamurugan, N. H. Kim, and J. H. Lee (2017). ACS Appl. Mater. & Interfaces 9, 2459.

    Article  CAS  Google Scholar 

  11. G. Liu, B. Wang, T. Liu, L. Wang, H. Luo, T. Gao, F. Wang, A. Liu, and D. Wang (2018). J. Mater. Chem. A 6, 1822.

    Article  CAS  Google Scholar 

  12. H. Luo, B. Wang, T. Liu, F. Jin, R. Liu, C. Xu, C. Wang, K. Ji, Y. Zhou, D. Wang, and S. Dou (2019). Energy Storage Mater. 19, 370.

    Article  Google Scholar 

  13. T. Ruan, B. Wang, Y. Yang, X. Zhang, R. Song, Y. Ning, Z. Wang, H. Yu, Y. Zhou, and D. Wang (2020). Adv. Mater. 32, 2000151.

    Article  CAS  Google Scholar 

  14. F. Chen, X. Cui, C. Liu, B. Cui, S. Dou, J. Xu, S. Liu, H. Zhang, Y. Deng, and Y. Chen (2021). Sci. China Mater. 64, 852.

    Article  CAS  Google Scholar 

  15. F. Chen, C. Liu, B. Cui, S. Dou, J. Xu, S. Liu, H. Zhang, Y. Deng, Y. Chen, and W. Hu (2021). J. Power Sources 482, 228910.

    Article  CAS  Google Scholar 

  16. B. Cui, Z. Hu, C. Liu, S. Liu, F. Chen, S. Hu, J. Zhang, W. Zhou, Y. Deng, and Z. Qin (2021). Nano Res. 14, 1149.

    Article  CAS  Google Scholar 

  17. H. Wu, Q. Lu, J. Zhang, J. Wang, X. Han, N. Zhao, W. Hu, J. Li, Y. Chen, and Y. Deng (2020). Nano-Micro Lett. 12, 1.

    Article  CAS  Google Scholar 

  18. T. Chen, Y. Tang, W. Guo, Y. Qiao, S. Yu, S. Mu, L. Wang, Y. Zhao, and F. Gao (2016). Electrochim. Acta 212, 294.

    Article  CAS  Google Scholar 

  19. J. Yang, X. Duan, W. Guo, D. Li, H. Zhang, and W. Zheng (2014). Nano Energy 5, 74.

    Article  CAS  Google Scholar 

  20. K.-J. Huang, J.-Z. Zhang, Y. Liu, and Y.-M. Liu (2015). Int. J. Hydrogen Energy 40, 10158.

    Article  CAS  Google Scholar 

  21. G. Zhang and X. W. Lou (2015). General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 25, 976.

    Article  CAS  Google Scholar 

  22. K. D. Ikkurthi, S. S. Rao, J.-W. Ahn, C. D. Sunesh, and H.-J. Kim (2019). Dalton Trans. 48, 578.

    Article  CAS  PubMed  Google Scholar 

  23. W. Zhang, J. Zhang, Y. Zhao, T. Tan, and T. Yang (2018). Materials 11, 1537.

    Article  PubMed Central  CAS  Google Scholar 

  24. J. Yang, X. Duan, Q. Qin, and W. Zheng (2013). J. Mater. Chem. A 1, 7880.

    Article  CAS  Google Scholar 

  25. S. Iqbal, N. A. Shaid, M. M. Sajid, Y. Javed, M. Fakhar-e-Alam, A. Mahmood, G. Ahmad, A. M. Afzal, S. Z. Hussain, and F. Ali (2020). J. Cryst. Growth 547, 125823.

    Article  CAS  Google Scholar 

  26. X. Yan, X. Tong, L. Ma, Y. Tian, Y. Cai, C. Gong, M. Zhang, and L. Liang (2014). Mater. Lett. 124, 133.

    Article  CAS  Google Scholar 

  27. H. Li, Z. Li, M. Sun, Z. Wu, W. Shen, and Y. Q. Fu (2019). Electrochim. Acta 319, 716–726.

    Article  CAS  Google Scholar 

  28. M. Sonawane, A. Patil, and R. Patil (2019). J. Nanosci. Tech. 2019, 761.

    Article  Google Scholar 

  29. F. S. Ham (1958). J. Phys. Chem. Solids 6, 335.

    Article  CAS  Google Scholar 

  30. K.-C. Chen, C.-W. Wang, Y.-I. Lee, and H.-G. Liu (2011). Colloids Surf A: Physicochem. Eng. Asp. 373, 124.

    Article  CAS  Google Scholar 

  31. A. Sattar, K. Alib, M. Sajjad, M. Shoukat, U. Ishtiaq, S. Rehman, A. Rizwan, A. Suhale, K. Arshad, and C. Nouman (2020). J. Ovonic Res. 16, 217.

    CAS  Google Scholar 

  32. F. Mohandes, F. Davar, and M. Salavati-Niasari (2010). J. Phys. Chem. Solids 71, 1623.

    Article  CAS  Google Scholar 

  33. T. Velayutham, W. H. Abd Majid, W. Gan, A. Khorsand Zak, and S. Gan (2012). J. App. Phys. 112, 054106.

    Article  CAS  Google Scholar 

  34. E. Della Gaspera, J. Griggs, T. Ahmed, S. Walia, E. L. Mayes, A. Calzolari, A. Catellani, and J. de Embden (2019). Nanoscale 11, 3154.

    Article  CAS  PubMed  Google Scholar 

  35. M. Kristl, B. Dojer, S. Gyergyek, and J. Kristl (2017). Heliyon 3, e00273.

    Article  PubMed  PubMed Central  Google Scholar 

  36. K. Krishnamoorthy, G. K. Veerasubramani, S. Radhakrishnan, and S. J. Kim (2014). Chem. Eng. J. 251, 116.

    Article  CAS  Google Scholar 

  37. P. Zhang, B. Y. Guan, L. Yu, and X. W. Lou (2017). Angew. Chem. Int. Edit. 56, 7141.

    Article  CAS  Google Scholar 

  38. M. F. Iqbal, M. N. Ashiq, M.-U. Hassan, R. Nawaz, A. Masood, and A. Razaq (2018). Energy 159, 151.

    Article  CAS  Google Scholar 

  39. Z. Qu, M. Shi, H. Wu, Y. Liu, J. Jiang, and C. Yan (2019). J. Power Sources 410, 179.

    Article  CAS  Google Scholar 

  40. H. Tong, W. Bai, S. Yue, Z. Gao, L. Lu, L. Shen, S. Dong, J. Zhu, J. He, and X. Zhang (2016). J. Mater. Chem. A 4, 11256.

    Article  CAS  Google Scholar 

  41. Q. Lu, M. W. Lattanzi, Y. Chen, X. Kou, W. Li, X. Fan, K. M. Unruh, J. G. Chen, and J. Q. Xiao (2011). Angew. Chem. Int. Edit. 50, 6847.

    Article  CAS  Google Scholar 

  42. B. Naresh, D. Punnoose, S. S. Rao, A. Subramanian, B. R. Ramesh, and H.-J. Kim (2018). New J. Chem. 42, 2733.

    Article  CAS  Google Scholar 

  43. F. Zhao, W. Huang, and D. Zhou (2018). J. Alloys Comp. 755, 15.

    Article  CAS  Google Scholar 

  44. A. E. Reddy, T. Anitha, C. V. M. Gopi, I. K. Durga, and H.-J. Kim (2018). New J. Chem. 42, 2964.

    Article  CAS  Google Scholar 

  45. B. Wei, H. Liang, R. Wang, D. Zhang, Z. Qi, and Z. Wang (2018). J. Energy Chem. 27, 472.

    Article  Google Scholar 

  46. Y. Chang, Y. Sui, J. Qi, L. Jiang, Y. He, F. Wei, Q. Meng, and Y. Jin (2017). Electrochim. Acta 226, 69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naveed Akhtar Shad or Yasir Javed.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 239 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, A., Yousaf, M.I., Shad, N.A. et al. Enhanced Electrochemical Performance of Hydrothermally Synthesized NiS/ZnS Composites as an Electrode for Super-Capacitors. J Clust Sci 33, 2325–2335 (2022). https://doi.org/10.1007/s10876-021-02157-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02157-7

Keywords

Navigation