Skip to main content
Log in

Classic Pentachlorophenol Hydroxylating Phenylalanine 4-Monooxygenase from Indigenous Bacillus tropicus Strain AOA-CPS1: Cloning, Overexpression, Purification, Characterization and Structural Homology Modelling

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The metabolically promiscuous pentachlorophenol (PCP) hydroxylating Phe4MO (represented as CpsB) was detected, amplified (from the genome of Bacillus tropicus strain AOA-CPS1), cloned, overexpressed, purified and characterized here. The 1.755-kb gene cloned in the pET15b vector expressed a ≅ 64 kDa monomeric protein which was purified to homogeneity by single-step affinity chromatography, with a total yield of 82.1%. The optimum temperature and pH of the enzyme were found to be 30 °C and 7.0, respectively. CpsB showed functional stability between pH 6.0–7.5 and temperature 25–30 °C. The enzyme–substrate reaction kinetic studies showed the allosteric nature of the enzyme and followed pre-steady state using NADH as a co-substrate with apparent vmax, Km, kcat and kcat/Km values of 0.465 μM.s−1, 140 μM, 0.099 s−1 and 7.07 × 10−4 μM−1.s−1, respectively, for the substrate PCP. The in-gel trypsin digestion experiments and bioinformatic tools confirmed that the reported enzyme is a Phe4MO with multiple putative conserved domains and metal ion-binding site. Though Phe4MO has been reported to have a diverse catalytic function, here we report, for the first time, that it functions as a PCP dehalogenase or PCP-4-monooxygenase by hydroxylating PCP. Hence, the use of this enzyme may be further explored in the bioremediation of PCP and other related xenobiotics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Mechanisms

Similar content being viewed by others

Data Availability

All the data related to the manuscript is included as figures, tables and supplementary material.

References

  1. ATSDR. Agency for Toxic Substances and Disease Registry. Substance priority list (candidates for toxicological profiles). 2017; 190. accessed on 31st December 2019. https://www.atsdr.cdc.gov/SPL/resources/.

  2. Lopez-Echartea, E., Macek, T., Demnerova, K., & Uhlik, O. (2016). Bacterial biotransformation of pentachlorophenol and micropollutants formed during its production process. International Journal of Environmental Research and Public Health, 13, 1–21. https://doi.org/10.3390/ijerph13111146

    Article  CAS  Google Scholar 

  3. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102-1109. https://doi.org/10.1093/nar/gky1033

    Article  PubMed  Google Scholar 

  4. Igbinosa EO, Odjadjare EE, Chigor VN, Igbinosa IH, Emoghene AO, Ekhaise FO, et al. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci World J. Hindawi; 2013;2013.

  5. IARC. International Agency for Research on Cancer monographs on the identification of carcinogenic hazards to humans. In: Agents Classified by the IARC Monographs, v 1–124., 2019. https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed May 28, 2019).

  6. Stockholm convention, Stockholm convention on persistent organic pollutants. In: Draft guidance on best available techniques and best environmental practices for the production and use of pentachlorophenol listed with specific exemptions under the Stockholm Convention (UNEP/POPS/COP9/INF/16). Geneva; 2019. Available: http://chm.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP9/tabid/7521/Default.aspx.

  7. Ammeri, R. W., Tlili, S. M., Mehri, I., Badi, S., & Hassen, A. (2016). Pentachlorophenol biodegradation by Citrobacter freundii isolated from forest contaminated soil. Water, Air, and Soil pollution, 227, 367. https://doi.org/10.1007/s11270-016-2959-z

    Article  CAS  Google Scholar 

  8. Sharma, A., Thakur, I. S., & Dureja, P. (2009). Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site. Biodegradation., 20, 643–650.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, S., Shibata, A., Yoshida, N., & Katayama, A. (2009). Anaerobic mineralization of pentachlorophenol (PCP) by combining PCP-dechlorinating and phenol-degrading cultures. Biotechnology and Bioengineering, 102, 81–90.

    Article  CAS  PubMed  Google Scholar 

  10. Aregbesola, O. A., Mokoena, M. P., & Olaniran, A. O. (2020). Biotransformation of pentachlorophenol by an indigenous Bacillus cereus AOA-CPS1 isolated from wastewater effluent in Durban. South Africa. Biodegradation, 31, 369–383. https://doi.org/10.1007/s10532-020-09915-w

    Article  PubMed  CAS  Google Scholar 

  11. Chanama, M., & Chanama, S. (2011). Expression of pentachlorophenol-degradative genes of Sphingobium chlorophenolica ATCC39723 in Escherichia coli. Asian Journal of Public Health., 2, 78–83.

    Google Scholar 

  12. Hlouchova, K., Rudolph, J., Pietari, J. M. H., Behlen, L. S., & Copley, S. D. (2012). Pentachlorophenol hydroxylase, a poorly functioning enzyme required for degradation of pentachlorophenol by Sphingobium chlorophenolicum. Biochemistry, 51, 3848–3860. https://doi.org/10.1021/bi300261p

    Article  PubMed  CAS  Google Scholar 

  13. Ning, D., & Wang, H. (2012). Involvement of cytochrome P450 in pentachlorophenol transformation in a white rot fungus Phanerochaete chrysosporium. PLoS ONE, 7, e45887. https://doi.org/10.1371/journal.pone.0045887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dai, M., & Copley, S. D. (2004). Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Applied and Environment Microbiology, 70, 2391–2397. https://doi.org/10.1128/AEM.70.4.2391-2397.2004

    Article  CAS  Google Scholar 

  15. Mitchell, S. C., & Steventon, G. B. (2020). Phenylalanine 4-monooxygenase: The “sulfoxidation polymorphism.” Xenobiotica, 50, 51–63. https://doi.org/10.1080/00498254.2019.1636419

    Article  PubMed  CAS  Google Scholar 

  16. Wang, H., Chen, H., Hao, G., Yang, B., Feng, Y., Wang, Y., et al. (2013). Role of the phenylalanine-hydroxylating system in aromatic substance degradation and lipid metabolism in the oleaginous fungus Mortierella alpina. Applied and Environment Microbiology, 79, 3225–3233. https://doi.org/10.1128/AEM.00238-13

    Article  CAS  Google Scholar 

  17. Flydal, M. I., Alcorlo-Pagés, M., Johannessen, F. G., Martínez-Caballero, S., Skjaerven, L., Fernandez-Leiro, R., et al. (2019). Structure of full-length human phenylalanine hydroxylase in complex with tetrahydrobiopterin. PNAS USA, 166, 11229–11234. https://doi.org/10.1073/pnas.1902639116

    Article  CAS  Google Scholar 

  18. Wang, H., Yang, B., Hao, G., Feng, Y., Chen, H., Feng, L., et al. (2011). Biochemical characterization of the tetrahydrobiopterin synthesis pathway in the oleaginous fungus Mortierella alpina. Microbiology, 157, 3059–3070. https://doi.org/10.1099/mic.0.051847-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Steventon GB, Mitchell SC. Phenylalanine 4-monooxygenase and the role of endobiotic metabolism enzymes in xenobiotic biotransformation. Expert Opinion on Drug Metabolism and Toxicology. 2009. 1213–1221. https://doi.org/10.1517/17425250903179318.

  20. Flydal, M. I., & Martinez, A. (2013). Phenylalanine hydroxylase: Function, structure, and regulation. IUBMB Life, 65, 341–349. https://doi.org/10.1002/iub.1150

    Article  PubMed  CAS  Google Scholar 

  21. Garg U, Smith LD. Chapter 3 - Organic acid disorders. In: Garg U, Smith LD, editors. Biomarkers in inborn errors of metabolism. Elsevier; 2017. pp. 65–85. https://doi.org/10.1016/B978-0-12-802896-4.00002-X.

  22. Aregbesola, O. A., Kumar, A., Mokoena, M. P., & Olaniran, A. O. (2021). Whole-genome sequencing, genome mining, metabolic reconstruction and evolution of pentachlorophenol and other xenobiotic degradation pathways in Bacillus tropicus strain AOA-CPS1. Functional & Integrative Genomics, 21(2), 171–193.

    Article  CAS  Google Scholar 

  23. Aregbesola, O. A., Kumar, A., Mokoena, M. P., & Olaniran, A. O. (2020). Role of tetrachloro-1, 4-benzoquinone reductase in phenylalanine hydroxylation system and pentachlorophenol degradation in Bacillus cereus AOA-CPS1. International Journal of Biological Macromolecules, 161, 875–890.

    Article  CAS  PubMed  Google Scholar 

  24. Aregbesola, O. A., Kumar, A., Mokoena, M. P., & Olaniran, A. O. (2020). Cloning, overexpression, purification, characterization and structural modelling of a metabolically active Fe2+ dependent 2, 6-dichloro-p-hydroquinone 1, 2-dioxygenase (CpsA) from Bacillus cereus strain AOA-CPS1. International Journal of Biological Macromolecules, 161, 247–257.

    Article  CAS  PubMed  Google Scholar 

  25. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  26. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. https://doi.org/10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  27. Silva, M. I., Burrows, H. D., Formosinho, S. J., Ferreira, L., Alves, A., Godinho, M. J., & Antunes, D. (2007). Photocatalytic degradation of chlorophenols using Ru bpy 32+/S2O82–. Environment Chem Letters., 5, 143–149. https://doi.org/10.1007/s10311-007-0096-z

    Article  CAS  Google Scholar 

  28. Endrenyi, L., Kwong, F. H. F., & Fajszi, C. (1975). Evaluation of Hill slopes and Hill coefficients when the saturation binding or velocity is not known. European Journal of Biochemistry, 51, 317–328.

    Article  CAS  PubMed  Google Scholar 

  29. Horn, A., Börnig, H., & Thiele, G. (1967). Allosteric properties of the Mg++-dependent inorganic Pyrophosphatase in mouse liver cytoplasm. European Journal of Biochemistry, 2, 243–249.

    Article  CAS  PubMed  Google Scholar 

  30. Monod, J., Wyman, J., & Changeux, J.-P. (1965). On the nature of allosteric transitions: A plausible model. Journal of Molecular Biology, 12, 88–118.

    Article  CAS  PubMed  Google Scholar 

  31. Horn, A., & Börnig, H. (1969). Analysis of kinetic data of allosteric enzymes by a linear plot. FEBS Letters, 3, 325–329.

    Article  CAS  PubMed  Google Scholar 

  32. Strickland, S., Palmer, G., & Massey, V. (1975). Determination of dissociation constants and specific rate constants of enzyme-substrate (or protein-ligand) interactions from rapid reaction kinetic data. Journal of Biological Chemistry, 250, 4048–4052.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, S., Su, T., Zhang, C., Zhang, W., Zhu, D., Su, J., et al. (2015). Crystal structure of PnpCD, a two-subunit hydroquinone 1, 2-dioxygenase, reveals a novel structural class of Fe2+-dependent Dioxygenases. Journal of Biological Chemistry, 290, 24547–24560. https://doi.org/10.1074/jbc.M115.673558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Setlhare B, Kumar A, Mokoena MP, Pillay B, Olaniran AO. Phenol hydroxylase from Pseudomonas sp. KZNSA: Purification, characterization and prediction of three-dimensional structure. Int J Biol Macromol. 2020; 146: 1000–1008. https://doi.org/10.1016/j.ijbiomac.2019.09.224.

  35. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46, W296–W303. https://doi.org/10.1093/nar/gky427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protection Science., 27, 129–134.

    CAS  Google Scholar 

  37. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    PubMed  CAS  Google Scholar 

  38. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution (N Y)., 39, 783–791.

    Google Scholar 

  39. Zuckerkandl E. Pauling L. Evolutionary divergence and convergence in proteins. Edited in Evolving Genes and Proteins by V. Bryson and H.J. Vogel, pp. 97–166. Academic Press, New York. 1965.

  40. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7 0 for bigger datasets. Molecular Biology Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ciufo, S., Kannan, S., Sharma, S., Badretdin, A., Clark, K., Turner, S., et al. (2018). Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. International Journal of Systematic and Evolutionary Microbiology, 68, 2386–2392. https://doi.org/10.1099/ijsem.0.002809

    Article  PubMed  PubMed Central  Google Scholar 

  42. Federhen S, Rossello-Mora R, Klenk H-P, Tindall BJ, Konstantinidis KT, Whitman WB, et al. Meeting report: GenBank microbial genomic taxonomy workshop (12–13 May, 2015). BioMed Central; 2016.

  43. Stacy, C., Sivakumar, K., Shobha, S., Azat, B., Karen, C., Seán, T., Slava, B., Conrad, L. S., & Avi, K. (2018). Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. International Journal of Systematic and Evolutionary Microbiology, 68, 2386–2392. https://doi.org/10.1099/ijsem.0.002809

    Article  Google Scholar 

  44. Federhen S, Rossello-Mora R, Klenk HP, Tindall BJ, Konstantinidis KT, Whitman WB, Brown D, Labeda D, Ussery D, Garrity GM. et al. Meeting report: GenBank microbial genomic taxonomy workshop (12–13 May, 2015) BioMed Central 2016.

  45. Siltberg-Liberles, J., Steen, I. H., Svebak, R. M., & Martinez, A. (2008). The phylogeny of the aromatic amino acid hydroxylases revisited by characterizing phenylalanine hydroxylase from Dictyostelium discoideum. Gene, 427, 86–92.

    Article  CAS  PubMed  Google Scholar 

  46. Erlandsen, H., Kim, J. Y., Patch, M. G., Han, A., Volner, A., Abu-Omar, M. M., et al. (2002). Structural comparison of bacterial and human iron-dependent phenylalanine hydroxylases: Similar fold, different stability and reaction rates. Journal of Molecular Biology, 320, 645–661. https://doi.org/10.1016/s0022-2836(02)00496-5

    Article  PubMed  CAS  Google Scholar 

  47. Simonet P, Gaget K, Parisot N, Duport G, Rey M, Febvay G, et al. Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids. Sci Rep. 2016; 6. https://doi.org/10.1038/srep34321.

  48. Han, C. S., Xie, G., Challacombe, J. F., Altherr, M. R., Bhotika, S. S., Bruce, D., et al. (2006). Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. Journal of Bacteriology, 188, 3382–3390. https://doi.org/10.1128/JB.188.9.3382-3390.2006

    Article  PubMed  PubMed Central  Google Scholar 

  49. Leung, K. T., Campbell, S., Gan, Y., White, D. C., Lee, H. I. Y., & Trevors, J. T. (1999). The role of the Sphingomonas species UG30 pentachlorophenol- 4-monooxygenase in p-nitrophenol degradation. FEMS Microbiology Letters, 173, 247–253. https://doi.org/10.1016/S0378-1097(99)00083-X

    Article  PubMed  CAS  Google Scholar 

  50. Wieser, M., Wagner, B., Eberspächer, J., & Lingens, F. (1991). Purification and characterization of 2,4,6 trichlorophenol 4 monooxygenase, a dehalogenating enzyme from Azotobacter sp Strain GP1. Journal of Bacteriology, 173, 4447–4453. https://doi.org/10.1128/jb.173.14.4447-4453.1991

    Article  Google Scholar 

  51. Louie, T. M., Webster, C. M., & Xun, L. (2002). Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. Journal of Bacteriology, 184, 3492–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xun, L. (1996). Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100. Journal of Bacteriology, 178(9), 2645–2649. https://doi.org/10.1128/jb.178.9.2645-2649.1996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Cafaro, V., Izzo, V., Scognamiglio, R., Notomista, E., Capasso, P., Casbarra, A., et al. (2004). Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: Interplay between two enzymes. Applied and Environmental Microbiolpgy. American Society Microbiology, 70, 2211–2219.

    Article  CAS  Google Scholar 

  54. Kirchner, U., Westphal, A. H., Müller, R., & van Berkel, W. J. H. (2003). Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual role for FAD. The Journal Biological Chemistry. ASBMB, 278, 47545–47553.

    Article  CAS  Google Scholar 

  55. Long, Y., Yang, S., Xie, Z., & Cheng, L. (2014). Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8. Canadian Journal of Microbiology. NRC Research Press, 60, 585–591.

    Article  CAS  Google Scholar 

  56. Zhang, J. J., Liu, H., Xiao, Y., Zhang, X. E., Zhou, N. Y., Kamerbeek, M., et al. (2009). Identification and characterization of catabolic para-nitrophenol 4 monooxygenase and para benzoquinone reductase from Pseudomonas sp Strain WBC 3. Journal of Bacteriology., 191, 2703–2710. https://doi.org/10.1128/JB.01566-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nakamura, T., Motoyama, T., Hirono, S., & Yamaguchi, I. (2004). Identification, characterization, and site-directed mutagenesis of recombinant pentachlorophenol 4-monooxygenase. Biochimica Biophysica Acta - Proteins Proteomics., 1700, 151–159. https://doi.org/10.1016/j.bbapap.2004.04.008

    Article  CAS  Google Scholar 

  58. Wang, H., Chen, H., Hao, G., Yang, B., Feng, Y., Wang, Y., et al. (2013). Role of the phenylalanine hydroxylating system in aromatic substance degradation and lipid metabolism in the oleaginous fungus Mortierella alpina. Applied and Environmental Microbiology, 79, 3225–3233. https://doi.org/10.1128/AEM.00238-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bellin, C. A., O’Connor, G. A., & Jin, Y. T. (1990). Sorption and degradation of pentachlorophenol in sludge-amended soils. Journal of Environmental Quality., 19, 603–608.

    Article  CAS  Google Scholar 

  60. Van Aken, P., Lambert, N., Van Den Broeck, R., Degrève, J., & Dewil, R. (2019). Advances in ozonation and biodegradation processes to enhance chlorophenol abatement in multisubstrate wastewaters: A review. Environmental Science: Water Research & Technology, 5, 444. https://doi.org/10.1039/c8ew00562a

    Article  CAS  Google Scholar 

  61. Gisi, M. R., & Xun, L. (2009). Characterization of chlorophenol 4-monooxygenase (TftD) and NADH: Flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100. Journal of Bacteriology, 185, 2786–2792.

    Article  CAS  Google Scholar 

  62. Das, B., & Patra, S. (2018). Multisubstrate specific flavin containing monooxygenase from Chlorella pyrenoidosa with potential application for phenolic wastewater remediation and biosensor application. Environmental Technology FEHLT., 39, 2073–2089. https://doi.org/10.1080/09593330.2017.1349838

    Article  CAS  Google Scholar 

  63. Flydal, M. I., Chatfield, C. H., Zheng, H., Gunderson, F. F., Aubi, O., Cianciotto, N. P., et al. (2012). Phenylalanine hydroxylase from Legionella pneumophila is a thermostable enzyme with a major functional role in Pyomelanin synthesis. PLoS ONE, 7, e46209. https://doi.org/10.1371/journal.pone.0046209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Luis, A. P., & Martinez, A. (2009). Iron binding effects on the kinetic stability and unfolding energetics of a thermophilic phenylalanine hydroxylase from Chloroflexus aurantiacus. JBIC Journal of Biological Inorganic Chemistry, 14, 521–531. https://doi.org/10.1007/s00775-009-0467-y

    Article  CAS  Google Scholar 

  65. Ekstrom F. X-ray characterization of PaPheOH, a bacterial phenylalanine hydroxylase Umeå University, 2003.

  66. Schenk, T., Muller, R., Morsberger, F., Otto, M. K., & Lingens, F. (1989). Enzymatic dehalogenation of pentachlorophenol by extracts from Arthrobacter sp Strain ATCC 33790. Journal of Bacteriology, 171(10), 5487–5491. https://doi.org/10.1128/jb.171.10.5487-5491.1989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhang, C., Freddolino, P. L., & Zhang, Y. (2017). COFACTOR: Improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research, 45, W291–W299. https://doi.org/10.1093/nar/gkx366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43, W174–W181. https://doi.org/10.1093/nar/gkv342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kale, A. J., McGlinchey, R. P., & Moore, B. S. (2010). Characterization of 5-chloro-5-deoxy-D-ribose 1-dehydrogenase in chloroethylmalonyl coenzyme a biosynthesis: Substrate and reaction profiling. Journal of Biological Chemistry, 285, 33710–33717. https://doi.org/10.1074/jbc.M110.153833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Halcrow MA. Comprehensive coordination chemistry II. In: Jon A. McCleverty and Thomas J. Meyer, editor. Bio-coordination chemistry. 2nd Editio. ScienceDirect; 2003. p. Volume 3, 2003, pp. 1–92. Available: https://doi.org/10.1016/B0-08-043748-6/02024-7

  71. Panay, A. J., Lee, M., Krebs, C., Bollinger, J. M., & Fitzpatrick, P. F. (2011). Evidence for a high-Spin Fe(IV) species in the catalytic cycle of a bacterial phenylalanine hydroxylase. Biochemistry, 50, 1928–1933. https://doi.org/10.1021/bi1019868

    Article  PubMed  CAS  Google Scholar 

  72. Lindhorst, A. C., Schütz, J., Netscher, T., Bonrath, W., & Kühn, F. E. (2017). Catalytic oxidation of aromatic hydrocarbons by a molecular iron-NHC complex. Catalysis Science & Technology, 7, 1902–1911. https://doi.org/10.1039/c7cy00557a

    Article  CAS  Google Scholar 

  73. Dai, M. H., Rogers, J. B., Warner, J. R., & Copley, S. D. (2003). A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). Journal of Bacteriology, 185, 302–310. https://doi.org/10.1128/JB.185.1.302-310.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chenprakhon P, Wongnate T, Chaiyen P. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Protein Science. 2019; 8–29. https://doi.org/10.1002/pro.3525.

  75. Torres Pazmiño DE, Winkler M, Glieder A, Fraaije MW. Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. J Biotechnol. 2010; 9–24. https://doi.org/10.1016/j.jbiotec.2010.01.021.

  76. Xun, L., & Orser, C. S. (1991). Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp strain ATCC 39723. Journal of Bacteriology, 173, 4447–4453. https://doi.org/10.1128/jb.173.14.4447-4453.1991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Wang, H., Tiirola, M. A., Puhakka, J. A., & Kulomaa, M. S. (2001). Production and characterization of the recombinant Sphingomonas chlorophenolica pentachlorophenol 4-monooxygenase. Biochemical and Biophysical Research Communications, 289, 161–166. https://doi.org/10.1006/bbrc.2001.5915

    Article  PubMed  CAS  Google Scholar 

  78. Madsen NB, Shechosky S. Allosteric properties of phosphorylase b II. comparision with a kinetic model. J Biol Chem. 1967; 242: 3301–3307.

  79. Yandell, J. K., Fay, D. P., & Sutin, N. (1973). Mechanisms of the reactions of cytochrome c. II. Rate of reduction of horse heart ferricytochrome c by chromium II. Journal of the American Chemical Society, 95, 1131–1137.

    Article  CAS  PubMed  Google Scholar 

  80. Lambeth, D. O., & Palmer, G. (1973). The kinetics and mechanism of reduction of electron transfer proteins and other compounds of biological interest by dithionite. Journal of Biological Chemistry, 248, 6095–6103.

    Article  CAS  PubMed  Google Scholar 

  81. Strickland, S., & Massey, V. (1973). The purification and properties of the flavoprotein melilotate hydroxylase. Journal of Biological Chemistry, 248, 2944–2952.

    Article  CAS  PubMed  Google Scholar 

  82. Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., et al. (2017). CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45, D200–D203. https://doi.org/10.1093/nar/gkw1129

    Article  PubMed  CAS  Google Scholar 

  83. Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., et al. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43, D222–D226. https://doi.org/10.1093/nar/gku1221

    Article  PubMed  CAS  Google Scholar 

  84. Marchler-Bauer, A., & Bryant, S. H. (2004). CD-Search: Protein domain annotations on the fly. Nucleic Acids Research, 32, W327–W331. https://doi.org/10.1093/nar/gkh454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Holm, L. (2019). Benchmarking fold detection by DaliLite v 5. Bioinformatics, 35(24), 5326–52–27. https://doi.org/10.1093/bioinformatics/btz536

    Article  PubMed  CAS  Google Scholar 

  86. Gupta, A., & Mahalakshmi, R. (2019). Helix-strand interaction regulates stability and aggregation of the human mitochondrial membrane protein channel VDAC3. Journal of General Physiology, 151, 489–504. https://doi.org/10.1085/jgp.201812272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Deber CM, Ng DP. Helix-helix interactions: Is the medium the message? Structure. 2015; 437–438. https://doi.org/10.1016/j.str.2015.02.004.

  88. Sun, L., Hu, X., Li, S., Jiang, Z., & Li, K. (2016). Prediction of complex super-secondary structure βαβ motifs based on combined features. Saudi Journal of Biological Sciences., 23, 66–71. https://doi.org/10.1016/j.sjbs.2015.10.005

    Article  PubMed  CAS  Google Scholar 

  89. Wu, Q., Sanford, R. A., & Löffler, F. E. (2006). Uranium(VI) reduction by Anaeromyxobacter dehalogenans strain 2CP-C. Applied and Environment Microbiology, 72, 3608–3614. https://doi.org/10.1128/AEM.72.5.3608-3614.2006

    Article  CAS  Google Scholar 

  90. He, Q., & Sanford, R. A. (2003). Characterization of Fe(III) reduction by chlororespiring Anaeromxyobacter dehalogenans. Applied and Environment Microbiology, 69, 2712–2718. https://doi.org/10.1128/AEM.69.5.2712-2718.2003

    Article  CAS  Google Scholar 

  91. Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., et al. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47, W636–W641. https://doi.org/10.1093/nar/gkz268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zhao G, Xia T, Song J, Jensent RA. Pseudomonas aeruginosa possesses homologues of mammalian phenylalanine hydroxylase and 4α-carbinolamine dehydratase/ DCoH as part of a three-component gene cluster. PNAS USA. 1994.

Download references

Acknowledgements

The authors thank Dr Mare Vlok of the CAF, Stellenbosch University, South Africa, for the Liquid-Chromatography Mass-Spectrometry proteomics analysis of the protein.

Funding

National Research Foundation, South Africa (Grant No: 94036 and 92803).

Author information

Authors and Affiliations

Authors

Contributions

O.A. and A.O. conceived and designed the project; O.A. and A.K. designed the experiments; O.A. performed the experiments; M.P. contributed reagents and materials; O.A., A.K., M.P. and A.O. wrote the manuscript; all the authors have read and approved the manuscript.

Corresponding author

Correspondence to Ademola O. Olaniran.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

All authors participated in the study either performing experiments or writing the manuscript.

Consent to Publish

All authors agree to publish the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2278 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aregbesola, O.A., Kumar, A., Mokoena, M.P. et al. Classic Pentachlorophenol Hydroxylating Phenylalanine 4-Monooxygenase from Indigenous Bacillus tropicus Strain AOA-CPS1: Cloning, Overexpression, Purification, Characterization and Structural Homology Modelling. Appl Biochem Biotechnol 194, 635–658 (2022). https://doi.org/10.1007/s12010-021-03645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03645-2

Keywords

Navigation