1932

Abstract

A small subset of marine microbial enzymes and surface transporters have a disproportionately important influence on the cycling of carbon and nutrients in the global ocean. As a result, they largely determine marine biological productivity and have been the focus of considerable research attention from microbial oceanographers. Like all biological catalysts, the activity of these keystone biomolecules is subject to control by temperature and pH, leaving the crucial ecosystem functions they support potentially vulnerable to anthropogenic environmental change. We summarize and discuss both consensus and conflicting evidence on the effects of sea surface warming and ocean acidification for five of these critical enzymes [carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), nitrogenase, nitrate reductase, and ammonia monooxygenase] and one important transporter (proteorhodopsin). Finally, we forecast how the responses of these few but essential biocatalysts to ongoing global change processes may ultimately help to shape the microbial communities and biogeochemical cycles of the future greenhouse ocean.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032221-084230
2022-01-03
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-032221-084230.html?itemId=/content/journals/10.1146/annurev-marine-032221-084230&mimeType=html&fmt=ahah

Literature Cited

  1. Ahlgren NA, Chen Y, Needham DM, Parada AE, Sachdeva R et al. 2017. Genome and epigenome of a novel marine Thaumarchaeota strain suggest viral infection, phosphorothioation DNA modification and multiple restriction systems. Environ. Microbiol. 19:2434–52
    [Google Scholar]
  2. Amoroso G, Sültemeyer D, Thyssen C, Fock HP. 1998. Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. . Plant Physiol 116:193–201
    [Google Scholar]
  3. Arrhenius SA. 1889. Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 4:96–116
    [Google Scholar]
  4. Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC et al. 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Botany 76:1052–71
    [Google Scholar]
  5. Baer SE, Connelly TL, Sipler RE, Yager PL, Bronk DA. 2014. Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer. Glob. Biogeochem. Cycles 28:1455–66
    [Google Scholar]
  6. Bar-On YM, Milo R 2019. The global mass and average rate of Rubisco. PNAS 116:4738–43
    [Google Scholar]
  7. Barcelos e Ramos J, Biswas H, Schulz KG, LaRoche J, Riebesell U. 2007. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Glob. Biogeochem. Cycles 21:GB2028
    [Google Scholar]
  8. Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH et al. 2016. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J 10:1051–63
    [Google Scholar]
  9. Beardall J, Beer S, Raven JA 1998. Biodiversity of marine plants in an era of climate change: some predictions based on physiological performance. Bot. Mar 41:113–24
    [Google Scholar]
  10. Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A et al. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–6
    [Google Scholar]
  11. Béjà O, Spudich EN, Spudich JL, Leclerc M, DeLong EF. 2001. Proteorhodopsin phototrophy in the ocean. Nature 411:786–89
    [Google Scholar]
  12. Bellerby RGJ, Schulz KG, Riebesell U, Neill C, Nondal G et al. 2008. Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment. Biogeosciences 5:1517–27
    [Google Scholar]
  13. Beman JM, Chow CE, King AL, Feng YY, Fuhrman JA et al. 2011. Global declines in oceanic nitrification rates as a consequence of ocean acidification. PNAS 108:208–13
    [Google Scholar]
  14. Berges JA, Mulholland MR 2008. Enzymes and nitrogen cycling. Nitrogen in the Marine Environment DG Capone, DA Bronk, MR Mulholland, EJ Carpenter 1385–444 San Diego, CA: Academic
    [Google Scholar]
  15. Berges JA, Varela DE, Harrison PJ. 2002. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Mar. Ecol. Prog. Ser. 225:139–46
    [Google Scholar]
  16. Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr., Long SP. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–59
    [Google Scholar]
  17. Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW 2019. Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. eLife 8:e41043
    [Google Scholar]
  18. Bhadury P, Ward BB. 2009. Molecular diversity of marine phytoplankton communities based on key functional genes. J. Phycol. 45:1335–47
    [Google Scholar]
  19. Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA et al. 2019. Changing ocean, marine ecosystems, and dependent communities. Special Report on the Ocean and Cryosphere in a Changing Climate H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor et al.447–587 Geneva: Intergov. Panel Clim. Change
    [Google Scholar]
  20. Bond DPG, Grasby SE. 2017. On the causes of mass extinctions. Palaeogeogr. Paleoclimatol. Palaeoecol. 478:3–29
    [Google Scholar]
  21. Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso J-P et al. 2018. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change. Glob. Change Biol. 24:2239–61
    [Google Scholar]
  22. Bradley PB, Sanderson MP, Frischer ME, Brofft J, Booth MG et al. 2010. Inorganic and organic nitrogen uptake by phytoplankton and heterotrophic bacteria in the stratified Mid-Atlantic Bight. Estuar. Coast. Shelf Sci. 88:429–41
    [Google Scholar]
  23. Brauer VS, Stomp M, Rosso C, van Beusekom SAM, Emmerich B et al. 2013. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece. . ISME J 7:2105–15
    [Google Scholar]
  24. Bristow LA, Sarode N, Cartee J, Caro-Quintero A, Thamdrup B, Stewart FJ. 2015. Biogeochemical and metagenomic analysis of nitrite accumulation in the Gulf of Mexico hypoxic zone. Limnol. Oceanogr. 60:1733–50
    [Google Scholar]
  25. Bunse C, Lundin D, Karlsson CMG, Akram N, Vila-Costa M et al. 2016. Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2. Nat. Clim. Change 6:483–87
    [Google Scholar]
  26. Carini P, Dupont CL, Santoro AE. 2018. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ. Microbiol. 20:2112–24
    [Google Scholar]
  27. Crawfurd KJ, Raven JA, Wheeler GL, Baxter EJ, Joint I. 2011. The response of Thalassiosira pseudonana to long-term exposure to increased CO2 and decreased pH. PLOS ONE 6:e26695
    [Google Scholar]
  28. Dang H, Chen C-TA. 2017. Ecological energetic perspectives on responses of nitrogen-transforming chemolithoautotrophic microbiota to changes in the marine environment. Front. Microbiol. 8:1246
    [Google Scholar]
  29. Devos N, Ingouff M, Loppes R, Matagne RF. 1998. RUBISCO adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J. Phycol. 34:655–60
    [Google Scholar]
  30. DiMario RJ, Machingura MC, Waldrop GL, Moroney JV. 2018. The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci 268:11–17
    [Google Scholar]
  31. Diner RE, Schwenck SM, McCrow JP, Zheng H, Allen AE 2016. Genetic manipulation of competition for nitrate between heterotrophic bacteria and diatoms. Front. Microbiol. 7:880
    [Google Scholar]
  32. Dioumaev AK, Wang JM, Bálint Z, Váró G, Lanyi JK. 2003. Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic. Biochemistry 42:6582–87
    [Google Scholar]
  33. Donaldson TL, Quinn JA 1974. Kinetic constants determined from membrane transport measurements: carbonic anhydrase activity at high concentrations. PNAS 71:4995–99
    [Google Scholar]
  34. Duarte CM, Hendriks IE, Moore TS, Olsen YS, Steckbauer A et al. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coasts 36:221–36
    [Google Scholar]
  35. Einsle O, Rees DC. 2020. Structural enzymology of nitrogenase enzymes. Chem. Rev. 120:4969–5004
    [Google Scholar]
  36. Finkel OM, Béjà O, Belkin S. 2013. Global abundance of microbial rhodopsins. ISME J 7:448–51
    [Google Scholar]
  37. Fixen KR, Zheng Y, Harris DF, Shaw S, Yang ZY et al. 2016. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. PNAS 113:10163–67
    [Google Scholar]
  38. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL et al. 2013. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. PNAS 110:9824–29
    [Google Scholar]
  39. Flores E, Frias JE, Rubio LM, Herrero A. 2005. Photosynthetic nitrate assimilation in cyanobacteria. Photosynth. Res. 83:117–33
    [Google Scholar]
  40. Fu F-X, Mulholland MR, Garcia N, Beck A, Bernhardt PW et al. 2008. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. . Limnol. Oceanogr. 53:2472–84
    [Google Scholar]
  41. Fu F-X, Yu E, Garcia NS, Gale J, Luo Y et al. 2014. Differing responses of marine N2-fixers to warming and consequences for future diazotroph community structure. Aquat. Microb. Ecol. 72:33–46
    [Google Scholar]
  42. Fulweiler RW, Emery HE, Heiss EM, Berounsky VM. 2011. Assessing the role of pH in determining water column nitrification rates in a coastal system. Estuaries Coasts 34:1095–102
    [Google Scholar]
  43. Galmés J, Capó-Bauçà S, Niinemets Ü, Iñiguez C. 2019. Potential improvement of photosynthetic CO2 assimilation in crops by exploiting the natural variation in the temperature response of Rubisco catalytic traits. Physiol. Metab. 49:60–67
    [Google Scholar]
  44. Galmés J, Hermida-Carrera C, Laanisto L, Niinemets Ü. 2016. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling. J. Exp. Bot. 67:5067–91
    [Google Scholar]
  45. Galmés J, Kapralov MV, Copolovici LO, Hermida-Carrera C, Niinemets Ü. 2015. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynth. Res. 123:183–201
    [Google Scholar]
  46. Gao Y, Smith GJ, Alberte RS. 2000. Temperature dependence of nitrate reductase activity in marine phytoplankton: biochemical analysis and ecological implications. J. Phycol. 36:304–13
    [Google Scholar]
  47. Gleich SJ, Plough LV, Glibert PM. 2020. Photosynthetic efficiency and nutrient physiology of the diatom Thalassiosira pseudonana at three growth temperatures. Mar. Biol. 167:124
    [Google Scholar]
  48. Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R et al. 2010. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLOS Biol 8:e1000358
    [Google Scholar]
  49. Gómez-Consarnau L, González JM, Riedel T, Jaenicke S, Wagner-Döbler I et al. 2016. Proteorhodopsin light-enhanced growth linked to vitamin-B1 acquisition in marine Flavobacteria. ISME J 10:1102–12
    [Google Scholar]
  50. Gómez-Consarnau L, Raven JA, Levine NM, Cutter LS, Wang D et al. 2019. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5:eaaw8855
    [Google Scholar]
  51. Grossart H-P, Allgaier M, Passow U, Riebesell U. 2006. Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnol. Oceanogr. 51:1–11
    [Google Scholar]
  52. Häder D-P, Gao K. 2015. Interactions of anthropogenic stress factors on marine phytoplankton. Front. Environ. Sci. 3:14
    [Google Scholar]
  53. Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA et al. 2010. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism to ecosystem perspective. Annu. Rev. Ecol. Evol. Syst. 41:127–48
    [Google Scholar]
  54. Hong H, Li D, Lin W, Li W, Shi D. 2017a. Nitrogen nutritional condition affects the response of energy metabolism in diatoms to elevated carbon dioxide. Mar. Ecol. Prog. Ser. 567:41–56
    [Google Scholar]
  55. Hong H, Shen R, Zhang F, Wen Z, Chang S et al. 2017b. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium. Science 356:527–31
    [Google Scholar]
  56. Horak REA, Qin W, Bertagnolli AD, Nelson A, Heal KR et al. 2017. Relative impacts of light, temperature, and reactive oxygen on thaumarchaeal ammonia oxidation in the North Pacific Ocean. Limnol. Oceanogr. 63:741–57
    [Google Scholar]
  57. Hu Z, Mulholland MR, Xu N, Duan S. 2016. Effects of temperature, irradiance and pCO2 on the growth and nitrogen utilization of Prorocentrum donghaiense. Aquat. Microb. Ecol. 77:155–66
    [Google Scholar]
  58. Hutchins DA, Boyd PW. 2016. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Change 6:1071–79
    [Google Scholar]
  59. Hutchins DA, Fu F-X. 2017. Microorganisms and ocean global change. Nat. Microbiol. 2:17508
    [Google Scholar]
  60. Hutchins DA, Fu F-X, Walworth NG, Lee MD, Saito MA, Webb EA. 2017. Comment on “The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium. Science 357:eaao006
    [Google Scholar]
  61. Hutchins DA, Fu F-X, Webb EA, Walworth N, Tagliabue A. 2013. Taxon-specific responses of marine nitrogen fixers to elevated carbon dioxide concentrations. Nat. Geosci. 6:790–95
    [Google Scholar]
  62. Hutchins DA, Fu F-X, Zhang Y, Warner ME, Feng Y et al. 2007. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 52:1293–304
    [Google Scholar]
  63. Hutchins DA, Walworth N, Webb EA, Saito MA, Moran D et al. 2015. Irreversibly increased N2 fixation in Trichodesmium experimentally adapted to high CO2. Nat. Commun. 6:8155
    [Google Scholar]
  64. Igamberdiev AU. 2015. Control of Rubisco function via homeostatic equilibration of CO2 supply. Front. Plant Sci. 6:106
    [Google Scholar]
  65. Inomura K, Deutsch C, Wilson ST, Masuda T, Lawrenz E et al. 2019. Quantifying oxygen management and temperature and light dependencies of nitrogen fixation by Crocosphaera watsonii. mSphere 4:e00531–19
    [Google Scholar]
  66. James WO. 1953. Plant Respiration Oxford, UK: Clarendon
  67. Jiang H-B, Fu F-X, Rivero-Calle S, Levine N, Sañudo-Wilhelmy SA et al. 2018. Ocean warming alleviates iron limitation of marine nitrogen fixation. Nat. Clim. Change 8:709–12
    [Google Scholar]
  68. Jiang X, Dang H, Jiao N. 2015. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments. PLOS ONE 10:e0117473
    [Google Scholar]
  69. Jiang X, Jiao N. 2016. Nitrate assimilation by marine heterotrophic bacteria. Sci. China Earth Sci. 59:477–83
    [Google Scholar]
  70. Joint I, Doney SC, Karl DM. 2011. Will ocean acidification affect marine microbes?. ISME J 5:1–7
    [Google Scholar]
  71. Jung JY, Choi AR, Lee YK, Lee HK, Jung K-H. 2008. Spectroscopic and photochemical analysis of proteorhodopsin variants from the surface of the Arctic Ocean. FEBS Lett 582:1679–84
    [Google Scholar]
  72. Kaplan A, Reinhold L. 1999. CO2 concentrating mechanisms in photosynthetic microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:539–70
    [Google Scholar]
  73. Kim S-H, Jung B, Hong SG, Jung K-H 2020. Temperature dependency of proton pumping activity for marine microbial rhodopsin from Antarctic Ocean. Sci. Rep. 10:1356
    [Google Scholar]
  74. Kling JD, Lee MD, Fu F-X, Phan MD, Wang X et al. 2020. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J 14:413–24
    [Google Scholar]
  75. Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–46
    [Google Scholar]
  76. Kudo I, Miyamoto M, Noiri Y, Maita Y. 2000. Combined effects of temperature and iron on the growth and physiology of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 36:1096–102
    [Google Scholar]
  77. Kustka AB, Milligan AJ, Zheng H, New AM, Gates C et al. 2014. Low CO2 results in a rearrangement of carbon metabolism to support C4 photosynthetic carbon assimilation in Thalassiosira pseudonana. New Phytol 204:507–20
    [Google Scholar]
  78. Langlois RJ, Hummer D, LaRoche J. 2008. Abundances and distributions of the dominant nifH phylotypes in the northern Atlantic Ocean. Appl. Environ. Microbiol. 74:1922–31
    [Google Scholar]
  79. Lavin P, González B, Santibáñez JF, Scanlan DJ, Ulloa O. 2010. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. Rep. 2:728–38
    [Google Scholar]
  80. Levitan O, Rosenberg G, Setlik I, Setlikova E, Grigel J et al. 2007. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Glob. Change Biol. 13:531–38
    [Google Scholar]
  81. Li F, Wu Y, Hutchins DA, Fu F-X, Gao K. 2016. Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations. Biogeosciences 13:6247–59
    [Google Scholar]
  82. Li K, Li M, He Y, Gu X, Pang K et al. 2020. Effects of pH and nitrogen form on Nitzschia closterium growth by linking dynamic with enzyme activity. Chemosphere 249:126154
    [Google Scholar]
  83. Liang C, Zhang Y, Wang L, Shi L, Xu D et al. 2020. Features of metabolic regulation revealed by transcriptomic adaptions driven by long-term elevated pCO2 in Chaetoceros muelleri. Phycol. Res. 68:236–48
    [Google Scholar]
  84. Lin JT, Stewart V. 1998. Nitrate assimilation by bacteria. Adv. Microb. Physiol. 39:1–30
    [Google Scholar]
  85. Liu JW, Weinbauer M, Maier C, Dai M, Gattuso J-P. 2010. Effect of ocean acidification on microbial diversity, and on microbe-driven biogeochemistry and ecosystem functioning. Aquat. Microb. Ecol. 61:291–305
    [Google Scholar]
  86. Liu Q, Tolar BB, Ross MJ, Cheek JB, Sweeney CM et al. 2018. Light and temperature control the seasonal distribution of Thaumarchaeota in the South Atlantic bight. ISME J 12:473–85
    [Google Scholar]
  87. Liu X, Li Y, Wu Y, Huang B, Dai M et al. 2017. Effect of ocean acidification on a model phytoplankton community during a mesocosm experiment in Chinese eutrophic coastal waters. Sci. Rep. 7:6868
    [Google Scholar]
  88. Lomas MW, Glibert PM. 1999. Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol. Oceanogr 44:556–72
    [Google Scholar]
  89. Lörinczi É, Verhoefen M-K, Wachtveitl J, Woerner AC, Glaubitz C et al. 2009. Voltage- and pH-dependent changes in vectoriality of photocurrents mediated by wild-type and mutant proteorhodopsins upon expression in Xenopus oocytes. J. Mol. Biol. 393:320–41
    [Google Scholar]
  90. Ma J, Wang P, Wang X, Xu Y, Paerl HW. 2019. Cyanobacteria in eutrophic waters benefit from rising atmospheric CO2 concentrations. Sci. Tot. Environ. 691:1144–54
    [Google Scholar]
  91. Man D, Wang W, Sabehi G, Aravind L, Post AF et al. 2003. Diversification and spectral tuning in marine proteorhodopsins. EMBO J 22:1725–31
    [Google Scholar]
  92. Mangan NM, Flamholz A, Hood RD, Milo R, Savage DF 2016. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism. PNAS 113:E5354–62
    [Google Scholar]
  93. Mazard SL, Fuller NJ, Orcutt KM, Bridle O, Scanlan DJ. 2004. PCR analysis of the distribution of unicellular cyanobacterial diazotrophs in the Arabian Sea. Appl. Environ. Microbiol. 70:7355–64
    [Google Scholar]
  94. Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS et al. 2010. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–14
    [Google Scholar]
  95. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6:701–10
    [Google Scholar]
  96. Mott KA, Berry JA. 1986. Effects of pH on activity and activation of ribulose 1,5-bisphosphate carboxylase at air level CO2. Plant Physiol 82:77–82
    [Google Scholar]
  97. Mundim KC, Baraldi S, Machado HG, Vieira FMC. 2020. Temperature coefficient (Q10) and its applications in biological systems: beyond the Arrhenius theory. Ecol. Model. 431:109127
    [Google Scholar]
  98. Newbold LK, Oliver AE, Booth T, Tiwari B, DeSantis T et al. 2012. The response of marine picoplankton to ocean acidification. Environ. Microbiol. 14:2293–307
    [Google Scholar]
  99. NOAA (Natl. Ocean. Atmos. Adm.) 2016. The sustained global ocean observing system for climate. Rep., Clim. Program Off., NOAA, Washington, DC. https://cpo.noaa.gov/Portals/0/Docs/OOM/OCO_ScienceBrochure_Web.pdf
    [Google Scholar]
  100. O'Donnell DR, Hamman CR, Johnson EC, Kremer CT, Klausmeier CA, Litchman E. 2018. Rapid thermal adaptation in a marine diatom reveals constraints and tradeoffs. Glob. Change Biol. 24:4554–65
    [Google Scholar]
  101. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–86
    [Google Scholar]
  102. Pearson PN, Palmer MR. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–99
    [Google Scholar]
  103. Pelejero C, Calvo E, Hoegh-Guldberg O. 2010. Paleo-perspectives on ocean acidification. Trends Ecol. Evol. 25:332–44
    [Google Scholar]
  104. Peng H, Wei D, Chen G, Chen F 2016. Transcriptome analysis reveals global regulation in response to CO2 supplementation in the oleaginous microalga Coccomyxa subellipsoidea C-169. Biotechnol. Biofuels 9:151
    [Google Scholar]
  105. Perdomo JA, Cavanagh AP, Kubien DS, Galmés J. 2015. Temperature dependence of in vitro Rubisco kinetics in species of Flaveria with different photosynthetic mechanisms. Photosynth. Res. 124:67–75
    [Google Scholar]
  106. Pierangelini M, Raven JA, Giordano M. 2017. The relative availability of inorganic carbon and inorganic nitrogen influences the response of the dinoflagellate Protoceratium reticulatum to elevated CO2. J. Phycol. 53:298–307
    [Google Scholar]
  107. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS et al. 2013. Global imprint of climate change on marine life. Nat. Clim. Change 3:919–25
    [Google Scholar]
  108. Poschenrieder C, Fernández JA, Rubio L, Pérez L, Terés J, Barceló J. 2018. Transport and use of bicarbonate in plants: current knowledge and challenges ahead. Int. J. Mol. Sci. 19:1352
    [Google Scholar]
  109. Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H et al. 2014. Marine ammonia oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. PNAS 111:12504–9
    [Google Scholar]
  110. Qu P, Fu F-X, Hutchins DA. 2018. Responses of the large centric diatom Coscinodiscus sp. to interactions between warming, elevated CO2, and nitrate availability. Limnol. Oceanogr. 63:1407–24
    [Google Scholar]
  111. Raven JA, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P et al. 2005. Ocean acidification due to increasing atmospheric carbon dioxide Policy Doc. 12/05 R. Soc. London:
  112. Raven JA, Cockell CS, De La Rocha CL. 2008. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos. Trans. R. Soc. Lond. B 363:2641–50
    [Google Scholar]
  113. Reinfelder JR. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu. Rev. Mar. Sci. 3:291–315
    [Google Scholar]
  114. Riebesell U, Wolf-Gladrow DA, Smetacek V 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249–51
    [Google Scholar]
  115. Robinson PK. 2015. Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41
    [Google Scholar]
  116. Rouco M, Branson O, Lebrato M, Iglesias-Rodríguez MD. 2013. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios. Front. Microbiol. 4:155
    [Google Scholar]
  117. Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P et al. 2015. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean. PNAS 112:1173–78
    [Google Scholar]
  118. Santoro AE, Richter RA, Dupont CL. 2019. Planktonic marine archaea. Annu. Rev. Mar. Sci. 11:131–58
    [Google Scholar]
  119. Schaefer SC, Hollibaugh JT. 2017. Temperature decouples ammonium and nitrite oxidation in coastal waters. Environ. Sci. Technol. 51:3157–64
    [Google Scholar]
  120. Seefeldt LC, Yang Z-Y, Lukoyanov DA, Harris DF, Dean DR et al. 2020. Reduction of substrates by nitrogenases. Chem. Rev. 120:5082–106
    [Google Scholar]
  121. Shi D, Li W, Hopkinson BM, Hong H, Li D et al. 2015. Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana. Limnol. Oceanogr. 60:1805–22
    [Google Scholar]
  122. Shiozaki T, Ijichi M, Isobe K, Hashihama F, Nakamura K-I et al. 2016. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME J 10:2184–97
    [Google Scholar]
  123. Shiraiwa Y, Miyachi S. 1985. Effects of temperature and CO2 concentration on induction of carbonic anhydrase and changes in efficiency of photosynthesis in Chlorella vulgaris 11h. Plant Cell Physiol 26:543–49
    [Google Scholar]
  124. Simon J, Klotz MG. 2013. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta Bioenerg. 1827:114–35
    [Google Scholar]
  125. Sippel D, Einsle O. 2017. The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat. Chem. Biol. 13:956–60
    [Google Scholar]
  126. Sohm JA, Webb EA, Capone DG. 2011. Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9:499–508
    [Google Scholar]
  127. Spackeen JL, Sipler RE, Bertrand EM, Xu K, McQuaid JB et al. 2018. Impact of temperature, CO2, and iron on nutrient uptake by a late-season microbial community from the Ross Sea, Antarctica. Aquat. Microb. Ecol. 82:145–59
    [Google Scholar]
  128. Spackeen JL, Sipler RE, Xu K, Tatters AO, Walworth NG et al. 2017. Interactive effects of elevated temperature and CO2 on nitrate, urea, and dissolved inorganic carbon uptake by a coastal California, USA, microbial community. Mar. Ecol. Prog. Ser. 577:49–65
    [Google Scholar]
  129. Staal M, Meysman FJR, Stal LJ. 2003. Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature 425:504–7
    [Google Scholar]
  130. Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC. 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–33
    [Google Scholar]
  131. Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ 2011. Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLOS ONE 6:e19725
    [Google Scholar]
  132. Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS. 2008. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J. Exp. Bot. 59:1515–24
    [Google Scholar]
  133. Tagliabue A, Barrier N, Du Pontavice H, Kwiatkowskis L, Aumont O et al. 2020. An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change. Glob. Change Biol. 26:6168–79
    [Google Scholar]
  134. Thomas MK, Kremer CT, Klausmeier CA, Litchman E. 2012. A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–88
    [Google Scholar]
  135. van Kesse MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM et al. 2015. Complete nitrification by a single microorganism. Nature 528:555–61
    [Google Scholar]
  136. Vogt A, Wietek J, Hegemann P. 2013. Gloeobacter rhodopsin, limitation of proton pumping at high electrochemical load. Biophys. J. 105:2055–63
    [Google Scholar]
  137. Volokita M, Zenvirth D, Kaplan A, Reinhold L. 1984. Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol 76:599–602
    [Google Scholar]
  138. Walworth NG, Fu F-X, Webb EA, Saito MA, Moran D et al. 2016. Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean. Nat. Commun. 7:12081
    [Google Scholar]
  139. Wang Y, Bouchard JN, Coyne KJ. 2018. Expression of novel nitrate reductase genes in the harmful alga, Chattonella subsalsa. Sci. Rep 8:13417
    [Google Scholar]
  140. Wannicke N, Frey C, Law CS, Voss M. 2018. The response of the marine nitrogen cycle to ocean acidification. Glob. Change Biol. 24:5031–43
    [Google Scholar]
  141. Ward BB, van Oostende N. 2016. Phytoplankton assemblage during the North Atlantic spring bloom assessed from functional gene analysis. J. Plankton Res. 38:1135–50
    [Google Scholar]
  142. Welter JR, Benstead JP, Cross WF, Hood JM, Huryn AD et al. 2015. Does N2 fixation amplify the temperature dependence of ecosystem metabolism?. Ecology 96:603–10
    [Google Scholar]
  143. Wilson PE, Bunker J, Lowery TJ, Watt GD. 2004. Reduction of nitrogenase Fe protein from Azotobacter vinelandii by dithionite: quantitative and qualitative effects of nucleotides, temperature, pH and reaction buffer. Biophys. Chem. 109:305–24
    [Google Scholar]
  144. Xia J-R, Gao KS. 2005. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J. Int. Plant Biol. 47:668–75
    [Google Scholar]
  145. Yamada K, Kawanabe A, Yoshizawa S, Inoue K, Kogure K, Kandori H. 2012. Anomalous pH effect of blue proteorhodopsin. J. Phys. Chem. Lett. 3:800–4
    [Google Scholar]
  146. Yang N, Merkel CA, Lin Y-A, Levine NM, Hawco NJ et al. 2021. Warming iron-limited oceans enhance nitrogen fixation and drive biogeographic specialization of the globally important cyanobacterium Crocosphaera. Front. Mar. Sci. 8:628363
    [Google Scholar]
  147. Young JN, Goldman JAL, Kranz SA, Tortell PD, Morel FMM. 2015. Slow carboxylation of Rubisco constrains the rate of carbon fixation during Antarctic phytoplankton blooms. New Phytol 205:172–81
    [Google Scholar]
  148. Young JN, Heureux AMC, Sharwood RE, Rickaby REM, Morel FMM, Whitney SM. 2016. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J. Exp. Bot. 67:erw163
    [Google Scholar]
  149. Young JN, Hopkinson BM. 2017. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms. J. Exp. Bot. 68:3751–62
    [Google Scholar]
  150. Zeebe R, Wolf-Gladrow D. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes Amsterdam: Elsevier
  151. Zehr JP, Capone DG. 2020. Changing perspectives in marine nitrogen fixation. Science 368:eaay9514
    [Google Scholar]
  152. Zheng Y, Harris DF, Yu Z, Fu Y, Poudel S et al. 2018. A pathway for biological methane production using bacterial iron-only nitrogenase. Nat. Microbiol. 3:281–86
    [Google Scholar]
  153. Zheng Z-Z, Wan X, Xu MN, Hsiao SS-Y, Zhang Y et al. 2017. Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China. J. Geophys. Res. Biogeosci. 122:2325–37
    [Google Scholar]
  154. Zheng Z-Z, Zheng L-W, Xu MN, Tan E, Hutchins DA et al. 2020. Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming. Nat. Commun. 11:3511
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032221-084230
Loading
/content/journals/10.1146/annurev-marine-032221-084230
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error