Skip to main content
Log in

Virtual Screening of Antimicrobial Agents from Medicinal Plants

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Discovery of new antimicrobial agents is an urgent need to fight emerging antibiotic resistance. Auxiliary pathways such as metabolism-related and stress-associated ones are considered to be attractive targets for new antimicrobial agents’ development, while medicinal plants and their constituents may be the potential sources. In this work, the iron utilization pathway was targeted with 2, 3-dihydroxybenzoic acid as the ligand to virtually screen Traditional Chinese Medicine (TCM) database for friendly and effective antimicrobial agents. Finally, nearly 70 potential compounds were screened out, and four were sampled and proved to have antibacterial activity. Above all, ligand–based virtual screening on natural products database can help us efficiently find friendly antimicrobial compounds for further in vitro testing and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mie, A., Andersen, H.R., Gunnarsson, S., Kahl, J., Kesse-Guyot, E., Rembiałkowska, E., Quaglio, G., and Grandjean, P., Environ. Health, 2017, vol. 16, no. 1, p. 111. https://doi.org/10.1186/s12940-017-0315-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miranda, C.D., Godoy, F.A., Lee, M.R., Front. Microbiol., 2018, vol. 9, p. 1284. https://doi.org/10.3389/fmicb.2018.01284

    Article  PubMed  PubMed Central  Google Scholar 

  3. Asif, M. and Imran, M., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 488–504. https://doi.org/10.1134/S1068162019060049

    Article  CAS  Google Scholar 

  4. Burnham, C.D., Leeds, J., Nordmann, P., O’Grady, J., and Patel, J., Nat. Rev. Microbiol., 2017, vol. 15, no. 11, pp. 697–703. https://doi.org/10.1038/nrmicro.2017.103

    Article  CAS  PubMed  Google Scholar 

  5. Petchiappan, A. and Chatterji, D., ACS Omega, 2017, vol. 2, no. 10, pp. 7400–7409. https://doi.org/10.1021/acsomega.7b01368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grzybowski, A. and Turczynowska, M., Asia Pac. J. Ophthalmol. (Phila), 2018, vol. 7, no. 2, pp. 72–75. https://doi.org/10.22608/APO.2017343

    Article  CAS  Google Scholar 

  7. Hijona, J.J., Carballo, A.L., Sánchez, M.S., Dyachkova, N., Expósito, J.F., Alcázar, J.L., J. Matern. Fetal Neonatal. Med., 2018, vol. 26, pp. 2741–2745. https://doi.org/10.1080/14767058.2018.1449196

    Article  CAS  Google Scholar 

  8. Balhara, M., Chaudhary, R., Ruhil, S., Singh, B., Dahiya, N., Parmar, V.S., Jaiwal, P.K., and Chhillar, A.K., Expert Opin. Ther. Targets, 2016, vol. 20, no. 12, pp. 1477–1489. https://doi.org/10.1080/14728222.2016.1254196

    Article  CAS  PubMed  Google Scholar 

  9. Lamb, A.L., Biochim. Biophys. Acta, 2015, vol. 1854, no. 8, pp. 1054–1070. https://doi.org/10.1016/j.bbapap.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellaire, B.H., Elzer, P.H., Baldwin, C.L., and Roop, R.M. II, Infect. Immun., 2003, vol. 71, no. 5, pp. 2927–2932. https://doi.org/10.1128/IAI.71.5.2927-2932.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balado, M., Souto, A., Vences, A., Careaga, V.P., Valderrama, K., Segade, Y., Rodríguez, J., Osorio, C.R., Jiménez, C., and Lemos, M.L., ACS Chem. Biol., 2015, vol. 10, no. 12, pp. 2850–2860. https://doi.org/10.1021/acschembio.5b00624

    Article  CAS  PubMed  Google Scholar 

  12. Naka, H., Reitz, Z.L., Jelowicki, A.L., Butler, A., and Haygood, M.G., J. Biol. Inorg. Chem., 2018, vol. 23, no. 7, pp. 1009–1022. https://doi.org/10.1007/s00775-018-1601-5

    Article  CAS  PubMed  Google Scholar 

  13. El-Gendy, N., Qian, J., Eshelman, K., Rivera, M., and Berkland, C., Biomacromolecules, 2015, vol. 16, no. 5, pp. 1480–1488. https://doi.org/10.1021/bm5016392

    Article  CAS  PubMed  Google Scholar 

  14. Li, J., Gao, Z., Zhao, D., Zhang, L., Qiao, X., Zhao, Y., Ding, H., Zhang, P., Lu, J., Liu, J., Jiang, H., Luo, C., and Chen, C., Cancer Res., 2017, vol. 77, no. 22, pp. 6253–6266. https://doi.org/10.1158/0008-5472.CAN-17-0484

    Article  CAS  PubMed  Google Scholar 

  15. Macauley, M.S., Arlian, B.M., Rillahan, C.D., Pang, P.C., Bortell, N., Marcondes, M.C., Haslam, S.M., Dell, A., and Paulson, J.C., J. Biol. Chem., 2014, vol. 289, no. 51, pp. 35149–35158. https://doi.org/10.1074/jbc.M114.606517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamamoto, R., Yamamoto, Y., Imai, S., Fukutomi, R., Ozawa, Y., Abe, M., Matuo, Y., and Saito, K., PLoS One, 2014, vol. 9, no. 2, pp. e88789–???. https://doi.org/10.1371/journal.pone.0088789

  17. Asfour, H.Z., J. Microsc. Ultrastruct., 2018, vol. 6, no. 1, pp. 1–10. https://doi.org/10.4103/JMAU.JMAU_10_18

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao, Y., Li, H., Wei, S., Zhou, X., and Xiao, X., Mini. Rev. Med. Chem., 2019, vol. 19, no. 2, pp. 125–137. https://doi.org/10.2174/1389557518666181017143141

    Article  CAS  PubMed  Google Scholar 

  19. Morozov, S.V., Tkacheva, N.I., and Tkachev, A.V., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 860–875. https://doi.org/10.1134/S1068162019070070

    Article  CAS  Google Scholar 

  20. Ma, X., Hu, M., Wang, H., and Li, J., Eur. J. Med. Chem., 2018, vol. 159, pp. 381–392. https://doi.org/10.1016/j.ejmech.2018.09.061

    Article  CAS  PubMed  Google Scholar 

  21. Chen, C.Y., PLoS One, 2011, vol. 6, no. 1, e15939. https://doi.org/10.1371/journal.pone.0015939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, L., Xie, D., Yu, Y., Liu, H., Shi, Y., Shi, T., and Wen, C., Nucleic Acids Res., 2018, vol. 46, no. D1, pp. D1117–D1120. https://doi.org/10.1093/nar/gkx1028

    Article  CAS  PubMed  Google Scholar 

  23. Dawood, H.M., Ibrahim, R.S., Shawky, E., Hammoda, H.M., and Metwally, A.M., J. Ethnopharmacol., 2018, vol. 224, pp. 359–372. https://doi.org/10.1016/j.jep.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  24. Wang, X., Zhang, Y., Liu, Q., Ai, Z., Zhang, Y., Xiang, Y., and Qiao, Y., Int. J. Mol. Sci., 2016, vol. 17, no. 3, p. 389. pp. 1–17. https://doi.org/10.3390/ijms17030389

  25. Yi, F., Li, L., Xu, L.J., Meng, H., Dong, Y.M., Liu, H.B., and Xiao, P.G., Chin. Med., 2018, vol. 13, 33. pp. 1–20. https://doi.org/10.1186/s13020-018-0190-0

  26. Kumar, A. and Zhang, K.Y.J., Front. Chem., 2018, vol. 315, no. 6, pp. 1–21. https://doi.org/10.3389/fchem.2018.00315

    Article  CAS  Google Scholar 

  27. Shang, J., Dai, X., Li, Y., Pistolozzi, M., and Wang, L., Bioinformatics, 2017, vol. 33, no. 21, pp. 3480–3481. https://doi.org/10.1093/bioinformatics/btx418

    Article  CAS  PubMed  Google Scholar 

  28. Georgiev, M.I., Mini. Rev. Med. Chem., 2011, vol. 11, no. 10, p. 822. https://doi.org/10.2174/138955711796575452

    Article  CAS  PubMed  Google Scholar 

  29. Kayser, O., Planta Med., 2018, vol. 84, nos. 12–13, pp. 834–838. https://doi.org/10.1055/a-0631-3876

    Article  CAS  PubMed  Google Scholar 

  30. Khan, A., Singh, P., and Srivastava, A., Microbiol. Res., 2018, vols. 212–213, pp. 103–111. https://doi.org/10.1016/j.micres.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura, K., Yamada, Y., Ikai, H., Kanno, T., Sasaki, K., and Niwano, Y., J. Agric. Food Chem., 2012, vol. 60, pp. 10048–10054. https://doi.org/10.1021/jf303177p

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Q., de Oliveira, E.F., Alborzi, S., Bastarrachea, L.J., and Tikekar, R.V., Sci. Rep., 2017, vol. 7 (1), no. 8325, pp. 1–11. https://doi.org/10.1038/s41598-017-08449-1

  33. Pandey, R.K., Jarvis, G.G., and Low, P.S., Org. Biomol. Chem., 2014, vol. 12, no. 11, pp. 1707–1710. https://doi.org/10.1039/c3ob41230j

    Article  CAS  PubMed  Google Scholar 

  34. Theodori, R., Karioti, A., Rancić, A., and Skaltsa, H., J. Nat. Prod., 2006, vol. 69, no. 4, pp. 662–664. https://doi.org/10.1021/np058084i

    Article  CAS  PubMed  Google Scholar 

  35. Wang, M., Jiang, N., Wang, Y., Jiang, D., and Feng, X., J. Agric. Food Chem., 2017, vol. 65, no. 26, pp. 5413–5420. https://doi.org/10.1021/acs.jafc.7b01409

    Article  CAS  PubMed  Google Scholar 

  36. Kong, B.S., Im, S.J., Lee, Y.J., Cho, Y.H., Do, Y.R., Byun, J.W., Ku, C.R., and Lee, E.J., PLoS One, 2016, vol. 11, no. 3, e0149394. https://doi.org/10.1371/journal.pone.0149394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheweita, S.A., Almasmari, A.A., and El-Banna, S.G., PLoS One, 2018, vol.13, no. 8, e0202110. https://doi.org/10.1371/journal.pone.0202110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tai, A., Sawano, T., and Ito, H., Biosci. Biotechnol. Biochem., 2012, vol. 76, no. 2, pp. 314–318. https://doi.org/10.1271/bbb.110700

    Article  CAS  PubMed  Google Scholar 

  39. Liu, J., Pu, H., Liu, S., Kan, J., and Jin, C., Carbohydr. Polym., 2017, vol. 174, pp. 999–1017. https://doi.org/10.1016/j.carbpol.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  40. Kosuru, R.Y., Roy, A., Das, S.K., and Bera, S., Mol. Nutr. Food Res., 2018, vol. 62, no. 1, p. 1700699. https://doi.org/10.1002/mnfr.201700699

    Article  CAS  Google Scholar 

  41. Zheng, M., Zhang, C., Zhou, Y., Lu, Z., Zhao, H., Bie, X., and Lu, F., Front. Microbiol., 2018, vol. 9, no. 1729, pp. 1–10. https://doi.org/10.3389/fmicb.2018.01729

Download references

ACKNOWLEDGMENTS

Acknowledgements of the assistance of Dr. Ling Wang in using HybridSim-VS server.

Funding

This work was supported by Shandong Provincial Key Research and Development Program, China (2019GHY112087).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Virtual screening was performed by Junkui Zhao, antimicrobial analysis was performed by Linyue Cheng, the manuscript was written by Yongzhong Lu and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Yongzhong Lu.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

No animals were involved in this work. No human subjects were involved in this work.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yongzhong Lu, Zhao, J. & Cheng, L. Virtual Screening of Antimicrobial Agents from Medicinal Plants. Russ J Bioorg Chem 47, 939–944 (2021). https://doi.org/10.1134/S1068162021040154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021040154

Keywords:

Navigation