Skip to main content
Log in

Finite Element Prediction of the Thermal Conductivity of GNP/Al Composites

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A 3D multi-scale finite element model was developed to predict the effective thermal conductivity of graphene nanoplatelet (GNP)/Al composites. The factors influencing the effective thermal conductivity of the GNP/Al composites were investigated, including the orientation, shape, aspect ratio, configuration and volume fraction of GNPs. The results show that GNPs shape has a little influence on the thermal conductivity of GNP/Al composites, and composites with elliptic GNPs have the highest thermal conductivity. In addition, with increasing the aspect ratio of GNPs, the thermal conductivity of GNP/Al composites increases and finally tends to be stable. The GNPs configuration strongly influences the thermal conductivity of GNP/Al composites, and the thermal conductivity of the composites with layered GNPs is the highest among the five configurations. The effective thermal conductivity is sensitive to volume fraction of GNPs. Ideally, when the volume fraction of layered GNPs reaches 1.54%, the thermal conductivity of GNP/Al composites is as high as 400 W/m K. The findings of this study could provide a good theoretical basis for designing high thermal conductivity GNP/Al composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. I. Tlili, T.A. Alkanhal, A.A. Barzinjy, R.N. Dara, A. Shafee, Z.X. Li, J. Mol. Liq. 294, 111564 (2019)

    Article  CAS  Google Scholar 

  2. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  CAS  Google Scholar 

  3. D.V. Thanh, N.V. Thien, B.H. Thang, N.V. Chuc, N.M. Hong, B.T. Trang, T.D. Lam, D.T.T. Huyen, P.N. Hong, P.N. Minh, J. Electron. Mater. 45, 2522 (2016)

    Article  Google Scholar 

  4. A. Bhadauria, L.K. Singh, T. Laha, Mater. Sci. Eng. A 749, 14 (2019)

    Article  CAS  Google Scholar 

  5. X.Q. Han, L.Z. Yang, N.Q. Zhao, C.N. He, Acta Metall. Sin. Engl. Lett. 34, 111 (2021)

    Article  CAS  Google Scholar 

  6. S.Y. Guo, X. Zhang, C.S. Shi, E.Z. Liu, C.N. He, F. He, N.Q. Zhao, Powder Technol. 362, 126 (2020)

    Article  CAS  Google Scholar 

  7. A. Saboori, M. Pavese, C. Badini, P. Fino, Acta Metall. Sin. Engl. Lett. 31, 148 (2018)

    Article  CAS  Google Scholar 

  8. S. Depaifve, S. Hermans, D. Ruch, A. Laachachi, Thermochim. Acta 691, 178712 (2020)

    Article  CAS  Google Scholar 

  9. W.S. Yang, G.Q. Chen, J. Qiao, S.F. Liu, R. Xiao, R.H. Dong, M. Hussain, G.H. Wu, Mater. Sci. Eng. A 700, 351 (2017)

    Article  CAS  Google Scholar 

  10. G. Li, B.W. Xiong, J. Alloys Compd. 697, 31 (2017)

    Article  CAS  Google Scholar 

  11. A. Bisht, M. Srivastava, R.M. Kumar, I. Lahiri, D. Lahiri, Mater. Sci. Eng. A 695, 20 (2017)

    Article  CAS  Google Scholar 

  12. B.Y. Ju, W.S. Yang, P.Z. Shao, M. Hussain, Q. Zhang, Z.Y. Xiu, X.W. Hou, J. Qiao, G.H. Wu, Carbon 162, 346 (2020)

    Article  CAS  Google Scholar 

  13. C.H. Jeon, Y.H. Jeong, J.J. Seo, H.N. Tien, S.T. Hong, Y.J. Yum, S.H. Hur, K.J. Lee, Int. J. Precis. Eng. Manuf. 15, 1235 (2014)

    Article  Google Scholar 

  14. A. Saboori, M. Pavese, C. Badini, P. Fino, Acta Metall. Sin. Engl. Lett. 30, 675 (2017)

    Article  CAS  Google Scholar 

  15. S. Polat, Y. Sun, E. Çevik, H. Colijn, Diam. Relat. Mater. 98, 107457 (2019)

    Article  CAS  Google Scholar 

  16. C.Y. Wang, Y.S. Su, Q.B. Ouyang, D. Zhang, Diam. Relat. Mater. 108, 107929 (2020)

    Article  CAS  Google Scholar 

  17. W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, P. Keblinski, Int. J. Heat Mass Transf. 51, 1431 (2008)

    Article  CAS  Google Scholar 

  18. W.K. Xiao, X. Zhai, P.F. Ma, T.T. Fan, X.T. Li, Res. Phys. 9, 673 (2018)

    Google Scholar 

  19. Y.F. Zhang, Y.H. Zhao, S.L. Bai, X.W. Yuan, Compos. B Eng. 106, 324 (2016)

    Article  CAS  Google Scholar 

  20. Z.W. Xu, S.H. He, J.J. Zhang, S.J. Huang, A.F. Chen, X.L. Fu, P. Zhang, Compos. Sci. Technol. 183, 107826 (2019)

    Article  CAS  Google Scholar 

  21. M. Inagaki, Y. Kaburagi, Y. Hishiyama, Adv. Eng. Mater. 16, 494 (2014)

    Article  CAS  Google Scholar 

  22. S. Kumar, R.S. Bhoopal, P.K. Sharma, R.S. Beniwal, R. Singh, Open. J. Compos. Mater. 1, 10 (2011)

    Google Scholar 

  23. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    Article  CAS  Google Scholar 

  24. I.E. Monje, E. Louis, J.M. Molina, J. Mater. Sci. 51, 8027 (2016)

    Article  CAS  Google Scholar 

  25. Y.S. Su, Z. Li, Y. Yu, L. Zhao, Z.Q. Li, Q. Guo, D.B. Xiong, D. Zhang, Sci. China Mater. 61, 112 (2018)

    Article  CAS  Google Scholar 

  26. G. Dai, L. Mishnaevsky, Compos. Sci. Technol. 91, 71 (2014)

    Article  CAS  Google Scholar 

  27. P.L. Bian, S. Schmauder, H. Qing, Compos. Struct. 245, 112337 (2020)

    Article  Google Scholar 

  28. J.J. Chen, J.C. Han, Results Phys. 15, 102803 (2019)

    Article  Google Scholar 

  29. B.Z. Gao, J.Z. Xu, J.J. Peng, F.Y. Kang, H.D. Du, J. Li, S.W. Chiang, C.J. Xu, N. Hu, X.S. Ning, Thermochim Acta 614, 1 (2015)

    Article  CAS  Google Scholar 

  30. W.L. Yang, J.Q. Sang, L.P. Zhou, K. Peng, J.J. Zhu, D.Y. Li, Diam. Relat. Mater. 81, 127 (2018)

    Article  CAS  Google Scholar 

  31. Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35, 2892 (2019)

    Article  Google Scholar 

  32. B.J. Yan, L. Cheng, B.Q. Li, P.C. Liu, X.W. Wang, R. Gao, Z.L. Yang, S.H. Xu, X.D. Ding, P.C. Zhang, Mater. Des. 189, 108483 (2020)

    Article  CAS  Google Scholar 

  33. Y.Y. Sun, L.Y. Zhou, Y. Han, L. Cui, L. Chen, Int. J. Heat Mass Transf. 160, 120157 (2020)

    Article  CAS  Google Scholar 

  34. C. Min, D.M. Yu, J.Y. Cao, G.L. Wang, L.H. Feng, Carbon 55, 116 (2013)

    Article  CAS  Google Scholar 

  35. C.P. Feng, S.S. Wan, W.C. Wu, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang, J. Chen, W. Yang, Compos. Sci. Technol. 167, 456 (2018)

    Article  CAS  Google Scholar 

  36. N. Song, D.J. Jiao, P. Ding, S.Q. Cui, S.F. Tang, L.Y. Shi, J. Mater. Chem. C 4, 305 (2016)

    Article  CAS  Google Scholar 

  37. B. Zhou, W. Luo, J.Q. Yang, X.B. Duan, Y.W. Wen, H.M. Zhou, R. Chen, B. Shan, Compos. Part A Appl. Sci. Manuf. 90, 410 (2016)

    Article  CAS  Google Scholar 

  38. J.K. Chen, I.S. Huang, Compos. Part B Eng. 44, 698 (2013)

    Article  CAS  Google Scholar 

  39. W.J. Li, Y. Liu, G.H. Wu, Carbon 95, 545 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-JSC015); the National Natural Science Foundation of China (Nos. 51931009, 51871214 and 51871215); the National Key R&D Program of China (No. 2017YFB0703104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Zhou or B. L. Xiao.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X.S., Zhou, L., Liu, K.Y. et al. Finite Element Prediction of the Thermal Conductivity of GNP/Al Composites. Acta Metall. Sin. (Engl. Lett.) 35, 825–838 (2022). https://doi.org/10.1007/s40195-021-01298-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01298-y

Keywords

Navigation