Skip to main content
Log in

Ballistic spin transport through a metallic system of two junctions with strong spin–orbit coupling

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Inversion asymmetry at an interface separating two different metals can produce a strong interfacial Rashba spin–orbit coupling (ISOC) that induces various charge and spin transport phenomena. For the sake of analyzing such emergent phenomena in a ballistic approximation, we consider a simple model of a metallic system of two interfaces with strong spin–orbit coupling. We show that the ISOC would be responsible for inducing a z-dependent and z-independent secondary lateral charge currents from the primary spin current injected in the system (spin-charge current conversion), where the z-direction corresponds to the direction of flow of the primary spin current. We explain the fundamental background behind this induction in terms of quantum interference effects. Furthermore, we show that the presence of a tunneling barrier between the two interfaces increases spin current attenuation, but reduces it once the width of the tunneling barrier becomes sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study, and no experimental data has been listed.]

References

  1. S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Von Molnar, M. Roukes, A.Y. Chtchelkanova, D.D. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. I. Žutić, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  3. M. Johnson, R.H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985)

    Article  ADS  Google Scholar 

  4. P. Van Son, H. Van Kempen, P. Wyder, Phys. Rev. Lett. 58, 2271 (1987)

    Article  ADS  Google Scholar 

  5. E. Šimánek, B. Heinrich, Phys. Rev. B 67, 144418 (2003)

    Article  ADS  Google Scholar 

  6. D. Mills, Phys. Rev. B 68, 014419 (2003)

    Article  ADS  Google Scholar 

  7. Y. Tserkovnyak, A. Brataas, G.E. Bauer, B.I. Halperin, Rev. Mod. Phys. 77, 1375 (2005)

    Article  ADS  Google Scholar 

  8. A. Brataas, G.E. Bauer, P.J. Kelly, Phys. Rep. 427, 157 (2006)

    Article  ADS  Google Scholar 

  9. S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)

    Article  ADS  Google Scholar 

  10. L. Gravier, S. Serrano-Guisan, F. Reuse, J.-P. Ansermet, Phys. Rev. B 73, 024419 (2006)

    Article  ADS  Google Scholar 

  11. O. Tsyplyatyev, O. Kashuba, V.I. Fal’ko, Phys. Rev. B 74, 132403 (2006)

    Article  ADS  Google Scholar 

  12. M. Hatami, G.E. Bauer, Q. Zhang, P.J. Kelly, Phys. Rev. Lett. 99, 066603 (2007)

    Article  ADS  Google Scholar 

  13. A. Takeuchi, K. Hosono, G. Tatara, Phys. Rev. B 81, 144405 (2010)

    Article  ADS  Google Scholar 

  14. W. Lin, K. Chen, S. Zhang, C. Chien, Phys. Rev. Lett. 116, 186601 (2016)

    Article  ADS  Google Scholar 

  15. M.I. Dyakonov, V. Perel, Phys. Lett. A 35, 459 (1971)

    Article  ADS  Google Scholar 

  16. M. D’yakonov, V. Perel, Soviet J. Exp. Theor. Phys. Lett. 13, 467 (1971)

    Google Scholar 

  17. A. Aronov, Y.B. Lyanda-Geller, Soviet J. Exp. Theor. Phys. Lett. 50, 431 (1989)

    Google Scholar 

  18. V.M. Edelstein, Sol. State Commun. 73, 233 (1990)

    Article  ADS  Google Scholar 

  19. J. Hirsch, Phys. Rev. Lett. 83, 1834 (1999)

    Article  ADS  Google Scholar 

  20. S. Zhang, Phys. Rev. Lett. 85, 393 (2000)

    Article  ADS  Google Scholar 

  21. S. Murakami, N. Nagaosa, S.-C. Zhang, Science 301, 1348 (2003)

    Article  ADS  Google Scholar 

  22. J. Sinova, D. Culcer, Q. Niu, N. Sinitsyn, T. Jungwirth, A.H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  Google Scholar 

  23. W.-K. Tse, J. Fabian, I. Žutić, S.D. Sarma, Phys. Rev. B 72, 241303 (2005)

    Article  ADS  Google Scholar 

  24. R. Raimondi, C. Gorini, P. Schwab, M. Dzierzawa, Phys. Rev. B 74, 035340 (2006)

    Article  ADS  Google Scholar 

  25. D. Culcer, R. Winkler, Phys. Rev. Lett. 99, 226601 (2007)

    Article  ADS  Google Scholar 

  26. E. Hankiewicz, G. Vignale, J. Phys. Cond. Matter 21, 253202 (2009)

    Article  ADS  Google Scholar 

  27. G. Vignale, J. Superconduct. Novel Magn. 23, 3 (2010)

    Article  Google Scholar 

  28. T. Kuschel, G. Reiss, Nat. Nanotechnol. 10, 22 (2015)

    Article  ADS  Google Scholar 

  29. G. Chen, Nat. Phys. 13, 112 (2017)

    Article  Google Scholar 

  30. D.C. Vaz, A. Barthélémy, M. Bibes, Jpn. J. Appl. Phys. 57, 0902A4 (2018)

    Article  Google Scholar 

  31. R. Mishra, F. Mahfouzi, D. Kumar, K. Cai, M. Chen, X. Qiu, N. Kioussis, H. Yang, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  32. M. Kazemi, M.F. Bocko, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  33. J.J. He, K. Hiroki, K. Hamamoto, N. Nagaosa, Commun. Phys. 2, 1 (2019)

    Article  Google Scholar 

  34. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Science 306, 1910 (2004)

    Article  ADS  Google Scholar 

  35. Y. Kato, R. Myers, A. Gossard, D. Awschalom, Phys. Rev. Lett. 93, 176601 (2004)

    Article  ADS  Google Scholar 

  36. A.Y. Silov, P. Blajnov, J. Wolter, R. Hey, K. Ploog, N. Averkiev, Appl. Phys. Lett. 85, 5929 (2004)

    Article  ADS  Google Scholar 

  37. M.B. Lifshits, M.I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)

    Article  ADS  Google Scholar 

  38. E. Saitoh, M. Ueda, H. Miyajima, G. Tatara, App. Phys. Lett. 88, 182509 (2006)

    Article  ADS  Google Scholar 

  39. S. Ganichev, E. Ivchenko, V. Bel’Kov, S. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider, W. Prettl, Nature 417, 163 (2002)

    Article  ADS  Google Scholar 

  40. C.R. Ast, J. Henk, A. Ernst, L. Moreschini, M.C. Falub, D. Pacilé, P. Bruno, K. Kern, M. Grioni, Phy. Rev. Lett. 98, 186807 (2007)

    Article  ADS  Google Scholar 

  41. L. Moreschini, A. Bendounan, H. Bentmann, M. Assig, K. Kern, F. Reinert, J. Henk, C. Ast, M. Grioni, Phys. Rev. B 80, 035438 (2009)

    Article  ADS  Google Scholar 

  42. S. Mathias, A. Ruffing, F. Deicke, M. Wiesenmayer, I. Sakar, G. Bihlmayer, E. Chulkov, Y.M. Koroteev, P. Echenique, M. Bauer et al., Phys. Rev. Lett. 104, 066802 (2010)

    Article  ADS  Google Scholar 

  43. A. Shikin, A. Rybkina, A. Korshunov, Y.B. Kudasov, N. Frolova, A. Rybkin, D. Marchenko, J. Sánchez-Barriga, A. Varykhalov, O. Rader, N. J. Phys. 15, 095005 (2013)

    Article  Google Scholar 

  44. A. Rybkin, A. Shikin, V. Adamchuk, D. Marchenko, C. Biswas, A. Varykhalov, O. Rader, Phys. Rev. B 82, 233403 (2010)

    Article  ADS  Google Scholar 

  45. Z. Wang, D.-K. Ki, H. Chen, H. Berger, A.H. MacDonald, A.F. Morpurgo, Nat. Commun. 6, 1 (2015)

    Google Scholar 

  46. J. Okabayashi, Y. Miura, H. Munekata, Sci. Rep. 8, 1 (2018)

    Article  Google Scholar 

  47. T. Yu, B. Deng, L. Zhou, P. Chen, Q. Liu, C. Wang, X. Ning, J. Zhou, Z. Bian, Z. Luo et al., ACS Appl. Mater. Interfaces 11, 44837 (2019)

    Article  Google Scholar 

  48. G. Wu, Y. Ren, X. He, Y. Zhang, H. Xue, Z. Ji, Q. Jin, Z. Zhang, Phys. Rev. Appl. 13, 024027 (2020)

    Article  ADS  Google Scholar 

  49. I. Martínez, P. Högl, C. González-Ruano, J.P. Cascales, C. Tiusan, Y. Lu, M. Hehn, A. Matos-Abiague, J. Fabian, I. Žutić et al., Phys. Rev. Appl. 13, 014030 (2020)

    Article  ADS  Google Scholar 

  50. J. Borge, I. Tokatly, Phys. Rev. B 96, 115445 (2017)

    Article  ADS  Google Scholar 

  51. M. Julliere, Phys. Lett. A 54, 225 (1975)

    Article  ADS  Google Scholar 

  52. T. Matsuyama, C.-M. Hu, D. Grundler, G. Meier, U. Merkt, Phys. Rev. B 65, 155322 (2002)

    Article  ADS  Google Scholar 

  53. Z.-G. Zhu, G. Su, B. Jin, Q.-R. Zheng, Phys. Lett. A 306, 249 (2003)

    Article  ADS  Google Scholar 

  54. M. Lee, M.-S. Choi, Phys. Rev. B 71, 153306 (2005)

    Article  ADS  Google Scholar 

  55. Z. Zhu, G. Su, Sci. China Phys. Mech. Astron. 56, 166 (2013)

    Article  ADS  Google Scholar 

  56. C. Morari, W.H. Appelt, A. Östlin, A. Prinz-Zwick, U. Schwingenschlögl, U. Eckern, L. Chioncel, Phys. Rev. B 96, 205137 (2017)

    Article  ADS  Google Scholar 

  57. T. Yokoyama, Phys. Rev. B 87, 241409 (2013)

    Article  ADS  Google Scholar 

  58. L. Ni, Z. Chen, X. Lu, Y. Yan, L. Jin, J. Zhou, W. Yue, Z. Zhang, L. Zhang, W. Wang et al., Appl. Phys. Lett. 117, 112402 (2020)

    Article  ADS  Google Scholar 

  59. X. Zhou, Z. Zhang, C.-Z. Hu. arXiv preprint arXiv:0904.3796 (2009)

  60. Z. An, F. Liu, Y. Lin, C. Liu, Sci. Rep. 2, 1 (2012)

    Google Scholar 

  61. E.I. Rashba, Phys. Rev. B 68, 241315 (2003)

    Article  ADS  Google Scholar 

  62. A. Rückriegel, P. Kopietz, Phys. Rev. B 95, 104436 (2017)

    Article  ADS  Google Scholar 

  63. J. Wang, B. Wang, W. Ren, H. Guo, Phys. Rev. B 74, 155307 (2006)

    Article  ADS  Google Scholar 

  64. Q.-F. Sun, X. Xie, Phys. Rev. B 72, 245305 (2005)

    Article  ADS  Google Scholar 

  65. P.-Q. Jin, Y.-Q. Li, F.-C. Zhang, J. Phys. A Math. Gen. 39, 7115 (2006)

    Article  ADS  Google Scholar 

  66. I. Tokatly, E. Krasovskii, G. Vignale, Phys. Rev. B 91, 035403 035403 (2015)

    Article  ADS  Google Scholar 

  67. S. Takahashi, S. Maekawa, J. Phys. Soc. Jpn. 77, 031009 (2008)

    Article  ADS  Google Scholar 

  68. T. Valet, A. Fert, Phys. Rev. B 48, 7099 (1993)

    Article  ADS  Google Scholar 

  69. G. Wysin, Department of Physics, Kansas State University, Manhattan, KS 66506, 2601

Download references

Author information

Authors and Affiliations

Authors

Contributions

Amjad Sharafeddine mainly developed the theoretical formalism, performed the analytic calculations, carried out the numerical simulations, and interpreted and concluded the results. Dr. A. A. Kordbacheh supervised the project and gave valuable notes on the structure of the paper.

Corresponding author

Correspondence to Amjad Sharafeddine.

Appendix A: Obtaining the scattering coefficients

Appendix A: Obtaining the scattering coefficients

We have assumed that V(z) is equal to \( V\Big (\theta (z+a)-\theta (z-a)\Big )\) (see Eq. (3)). Hence, \(V'(z)=V(\delta (z+a)-\delta (z-a))\).

We can let

$$\begin{aligned} V_1(z)=V(z), \end{aligned}$$
(A1)

and

$$\begin{aligned} V_\mathrm{RSOC}(z)=\lambda z^{-1}\dfrac{\partial V(z)}{\partial z}(\vec {z} \times \vec {p})\cdot \vec {\sigma }. \end{aligned}$$
(A2)

It can be noticed from the Hamiltonian in Eq. (1) that the scattering problem is composed of two problems, one that corresponds to the potential \(V_{1}(z)\) which is the step potential problem and other that corresponds to the potential \(V_\mathrm{RSOC}(z)\) which is the dirac-delta potential localized at the interfaces. To obtain the energy eigenfunctions of \({\hat{H}}\), we first solve the common step potential problem, which gives us the eigenfunctions in Sect. 2.2, but by modifying and adding an additional terms to the scattering coefficients obtained in case \(V_\mathrm{RSOC}=0 (r_0, t_0, r_1, t_1).\)

In our case, the additional terms corresponding to \(r_0\) and \(t_0\) are \(\vec {{\mathbf {r}}} \cdot \vec {\sigma }\) and \(\vec {{\mathbf {t}}} \cdot \vec {\sigma }\), respectively. While the additional terms corresponding to \(r_1\) and \(t_1\) are \(\vec {{\mathbf {r}}}_1 \cdot \vec {\sigma }\) and \(\vec {{\mathbf {t}}}_1 \cdot \vec {\sigma }\), respectively. The exact form of the scattering coefficients \(({\hat{r}}_k, {\hat{t}}_k, {\hat{t}}_{1k}\) and \({\hat{r}}_{1k})\) in terms of the wavevector k of the electron is obtained by making the energy eigenfunctions obey to the boundary conditions imposed by the dirac-delta potential term \(V_\mathrm{RSOC}(z)\).

The boundary conditions are:

  1. 1.

    \(\phi _{k\sigma }(z)\) is continuous along z.

  2. 2.

    \( \dfrac{d\phi _{k\sigma }(z)}{dz}\Big |_{z=\pm a}=-2m\Gamma \phi _{k}(\pm a),\)

where, \(V_\mathrm{RSOC}=-\Gamma V(\delta (z+a)-\delta (z-a))\).

By handling the boundary conditions above, the x and y terms of the SOC-part of the transmission and reflection coefficients can be written in the following form:

$$\begin{aligned} r_{x/y}= & {} t_{1x/y}e^{-i(k+k')a}+r_{1x/y}e^{i(k'-k)a} \end{aligned}$$
(A3)
$$\begin{aligned} t_{x/y}= & {} t_{1x/y}e^{i(k'-k)a}+r_{1x/y}e^{-i(k+k')a} \end{aligned}$$
(A4)

The functions \(\chi _{1/2}, {\mathcal {M}}, {\mathcal {F}}, {\mathcal {A}}, {\mathcal {B}}\) and \({\mathcal {C}}\) are just formulated for the sake of simplifying Eq. (7) and they have the following form:

$$\begin{aligned} \chi _1= & {} \dfrac{\mathcal {AB}+2k}{{\mathcal {C}}}, \quad \chi _2=\dfrac{2{\mathcal {A}}k+{\mathcal {B}}}{{\mathcal {C}}}. \end{aligned}$$
(A5)
$$\begin{aligned} {\mathcal {M}}= & {} (\alpha \beta ^2p)^2(\chi _1+\chi _2)+k'(1+{\mathcal {A}}). \end{aligned}$$
(A6)
$$\begin{aligned} {\mathcal {F}}= & {} ({\mathcal {A}}+1)e^{-ika}\Big (e^{(2ik'a)}+e^{(-2ik'a)}\Big ). \end{aligned}$$
(A7)
$$\begin{aligned} {\mathcal {A}}= & {} \dfrac{\big [{\mathcal {B}}(k-k')+{\mathcal {C}}\big ]e^{ik'a}-2k(k+k')e^{-ik'a}}{\big [{\mathcal {B}}(k+k')-{\mathcal {C}}\big ]e^{-ik'a}-2k(k-k')e^{ik'a}}. \end{aligned}$$
(A8)
$$\begin{aligned} {\mathcal {B}}= & {} (k+k')e^{-2ik'a}+(k-k')e^{2ik'a}. \end{aligned}$$
(A9)
$$\begin{aligned} {\mathcal {C}}= & {} (k+k')^2e^{-2ik'a}-(k-k')^2e^{2ik'a}. \end{aligned}$$
(A10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharafeddine, A., Kordbacheh, A.A. Ballistic spin transport through a metallic system of two junctions with strong spin–orbit coupling. Eur. Phys. J. B 94, 168 (2021). https://doi.org/10.1140/epjb/s10051-021-00184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00184-x

Navigation