Skip to main content

Advertisement

Log in

The Central Mechanisms of Resistance Training and Its Effects on Cognitive Function

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Resistance exercise is used extensively in athletic and general populations to induce neuromuscular adaptations to increase muscle size and performance. Exercise parameters such as exercise frequency, intensity, duration and modality are carefully manipulated to induce specific adaptations to the neuromuscular system. While the benefits of resistance exercise on the neuromuscular system are well documented, there is growing evidence to suggest that resistance exercise, even when performed acutely, can lead to neuroplastic changes within the central nervous system (CNS) and improve cognitive functioning. As such, resistance exercise has been proposed as a novel adjuvant rehabilitation strategy in populations that suffer from neurological or neurocognitive impairments (i.e. Parkinson’s and Alzheimer’s dementia) or even to attenuate age-related declines in cognitive health. In this review, we present evidence for the neuroplastic effects and cognitive benefits of resistance exercise and propose some of the underlying mechanisms that drive neuroplasticity following resistance training. We will further discuss the effects of exercise parameters, in particular exercise frequency, intensity, duration and modality to improve cognitive health. Lastly, we will highlight some of the existing limitations in the literature surrounding the use of resistance exercise to improve cognitive function and propose considerations to improve future studies in this field. In summary, the current evidence supports the role of resistance exercise, as a stand alone or in combination with aerobic exercise, for benefiting cognitive health and that it should be considered as an adjuvant therapy to treat age- or disease-related cognitive declines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reiner M, Niermann C, Jekauc D, Woll A. Long-term health benefits of physical activity—a systematic review of longitudinal studies. BMC Public Health. 2013;8(13):813.

    Article  Google Scholar 

  2. Daskalopoulou C, Stubbs B, Kralj C, Koukounari A, Prince M, Prina AM. Physical activity and healthy ageing: a systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev. 2017;38:6–17.

    Article  CAS  PubMed  Google Scholar 

  3. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McArdle WD, Katch FI, Katch VL. Essentials of exercise physiology. 2nd ed. Philadephia: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  5. McArdle WD, Katch FI, Katch VL. Exercise physiology: nutrition, energy, and human performance. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2015.

    Google Scholar 

  6. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sport Med. 2018;52(3):154.

    Article  Google Scholar 

  7. Song D, Yu DSF, Li PWC, Lei Y. The effectiveness of physical exercise on cognitive and psychological outcomes in individuals with mild cognitive impairment: a systematic review and meta-analysis. Int J Nurs Stud. 2018;79:155–64.

    Article  PubMed  Google Scholar 

  8. Saez de Asteasu ML, Martinez-Velilla N, Zambom-Ferraresi F, Casas-Herrero A, Izquierdo M. Role of physical exercise on cognitive function in healthy older adults: A systematic review of randomized clinical trials. Ageing Res Rev. 2017;37:117–34.

    Article  PubMed  Google Scholar 

  9. Cai H, Li G, Hua S, Liu Y, Chen L. Effect of exercise on cognitive function in chronic disease patients: a meta-analysis and systematic review of randomized controlled trials. Clin Interv Aging. 2017;12:773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Falck RS, Davis JC, Best JR, Crockett RA, Liu-Ambrose T. Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiol Aging. 2019;79:119–30.

    Article  PubMed  Google Scholar 

  11. Chapman SB, Aslan S, Spence JS, Defina LF, Keebler MW, Didehbani N, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5:75.

    Article  PubMed  PubMed Central  Google Scholar 

  12. MacIntosh BJ, Crane DE, Sage MD, Rajab AS, Donahue MJ, McIlroy WE, et al. Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PLoS ONE. 2014;9(1):e85163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Griffin EW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly AM. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav. 2011;104(5):934–41.

    Article  CAS  PubMed  Google Scholar 

  14. Tsai CL, Chen FC, Pan CY, Wang CH, Huang TH, Chen TC. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology. 2014;41:121–31.

    Article  CAS  PubMed  Google Scholar 

  15. Ari Z, Kutlu N, Uyanik BS, Taneli F, Buyukyazi G, Tavli T. Serum testosterone, growth hormone, and insulin-like growth factor-1 levels, mental reaction time, and maximal aerobic exercise in sedentary and long-term physically trained elderly males. Int J Neurosci. 2004;114(5):623–37.

    Article  CAS  PubMed  Google Scholar 

  16. Carro E, Trejo JL, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci. 2001;21(15):5678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sandri M, Beck EB, Adams V, Gielen S, Lenk K, Hollriegel R, et al. Maximal exercise, limb ischemia, and endothelial progenitor cells. Eur J Cardiovasc Prev Rehabil. 2011;18(1):55–64.

    Article  PubMed  Google Scholar 

  18. Park J, Nakamura Y, Kwon Y, Park H, Kim E, Park S. The effect of combined exercise training on carotid artery structure and function, and vascular endothelial growth factor (Vegf) in obese older women. Jpn J Phys Fit Sport. 2010;59(5):495–503.

    Google Scholar 

  19. Lautenschlager NL, Cox K, Hill KD, Pond D, Ellis KA, Dow B, et al. Physical activity guidelines for older Australians with mild cognitive impairment or subjective cognitive decline. Melbourne: Dementia Collaborative Research Centres; 2018.

    Google Scholar 

  20. Folland JP, Williams AG. The adaptations to strength training : morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68.

    Article  PubMed  Google Scholar 

  21. Carey JR, Bhatt E, Nagpal A. Neuroplasticity promoted by task complexity. Exerc Sport Sci Rev. 2005;33(1):24–31.

    PubMed  Google Scholar 

  22. Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(Pt 6):1591–609.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mellow ML, Goldsworthy MR, Coussens S, Smith AE. Acute aerobic exercise and neuroplasticity of the motor cortex: a systematic review. J Sci Med Sport. 2020;23(4):408–14.

    Article  PubMed  Google Scholar 

  24. Crozier J, Roig M, Eng JJ, MacKay-Lyons M, Fung J, Ploughman M, et al. High-intensity interval training after stroke: an opportunity to promote functional recovery, cardiovascular health, and neuroplasticity. Neurorehabil Neural Repair. 2018;32(6–7):543–56.

    Article  PubMed  Google Scholar 

  25. Song MK, Kim EJ, Kim JK, Lee SG. Effects of exercise timing and intensity on neuroplasticity in a rat model of cerebral infarction. Brain Res Bull. 2020;160:50–5.

    Article  CAS  PubMed  Google Scholar 

  26. Leung M, Rantalainen T, Teo WP, Kidgell D. The corticospinal responses of metronome-paced, but not self-paced strength training are similar to motor skill training. Eur J Appl Physiol. 2017;117:2479–92.

    Article  PubMed  Google Scholar 

  27. Leung M, Rantalainen T, Teo WP, Kidgell D. Motor cortex excitability is not differentially modulated following skill and strength training. Neuroscience. 2015;305:99–108.

    Article  CAS  PubMed  Google Scholar 

  28. Weier AT, Pearce AJ, Kidgell DJ. Strength training reduces intracortical inhibition. Acta Physiol (Oxf). 2012;206(2):109–19.

    Article  CAS  Google Scholar 

  29. Nagamatsu LS, Handy TC, Hsu CL, Voss M, Liu-Ambrose T. Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch Intern Med. 2012;172(8):666–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Best JR, Chiu BK, Liang Hsu C, Nagamatsu LS, Liu-Ambrose T. Long-term effects of resistance exercise training on cognition and brain volume in older women: results from a randomized controlled trial. J Int Neuropsychol Soc. 2015;21(10):745–56.

    Article  PubMed  Google Scholar 

  31. Coelho FM, Pereira DS, Lustosa LP, Silva JP, Dias JM, Dias RC, et al. Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women. Arch Gerontol Geriatr. 2012;54(3):415–20.

    Article  CAS  PubMed  Google Scholar 

  32. Coelho FG, Gobbi S, Andreatto CA, Corazza DI, Pedroso RV, Santos-Galduroz RF. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch Gerontol Geriatr. 2013;56(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  33. Liu-Ambrose T, Nagamatsu LS, Graf P, Beattie BL, Ashe MC, Handy TC. Resistance training and executive functions: a 12-month randomized controlled trial. Arch Intern Med. 2010;170(2):170–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cassilhas RC, Viana VAR, Grassmann V, Santos RT, Santos RF, Tufik S, et al. The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sport Exer. 2007;39(8):1401–7.

    Article  Google Scholar 

  35. Fiatarone Singh MA, Gates N, Saigal N, Wilson GC, Meiklejohn J, Brodaty H, et al. The Study of Mental and Resistance Training (SMART) study—resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc. 2014;15(12):873–80.

    Article  PubMed  Google Scholar 

  36. Marker KR. Marker software: Heidelberg and Ladenburg; 1986–2008.

  37. Alves CR, Gualano B, Takao PP, Avakian P, Fernandes RM, Morine D, et al. Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise. J Sport Exerc Psychol. 2012;34(4):539–49.

    Article  PubMed  Google Scholar 

  38. Dunsky A, Abu-Rukun M, Tsuk S, Dwolatzky T, Carasso R, Netz Y. The effects of a resistance vs. an aerobic single session on attention and executive functioning in adults. PLoS ONE. 2017;12(4):e0176092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464–72.

    Article  CAS  PubMed  Google Scholar 

  40. Sun H, Zhang J, Zhang L, Liu H, Zhu H, Yang Y. Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Curr Neurovasc Res. 2010;7(4):268–80.

    Article  CAS  PubMed  Google Scholar 

  41. Gualtieri F, Bregere C, Laws GC, Armstrong EA, Wylie NJ, Moxham TT, et al. Effects of environmental enrichment on doublecortin and BDNF expression along the dorso-ventral axis of the dentate gyrus. Front Neurosci. 2017;11:488.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37(12):1553–61.

    Article  CAS  PubMed  Google Scholar 

  43. Neeper SA, Gomez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature. 1995;373(6510):109.

    Article  CAS  PubMed  Google Scholar 

  44. Oliff HS, Berchtold NC, Isackson P, Cotman CW. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res. 1998;61(1–2):147–53.

    Article  CAS  PubMed  Google Scholar 

  45. Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, et al. BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun. 2007;358(4):961–7.

    Article  CAS  PubMed  Google Scholar 

  46. Suijo K, Inoue S, Ohya Y, Odagiri Y, Takamiya T, Ishibashi H, et al. Resistance exercise enhances cognitive function in mouse. Int J Sports Med. 2013;34(4):368–75.

    CAS  PubMed  Google Scholar 

  47. Lee MC, Okamoto M, Liu YF, Inoue K, Matsui T, Nogami H, et al. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling. J Appl Physiol (1985). 2012;113(8):1260–6.

    Article  Google Scholar 

  48. Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39(4):728–34.

    Article  CAS  PubMed  Google Scholar 

  49. Zoladz JA, Pilc A, Majerczak J, Grandys M, Zapart-Bukowska J, Duda K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008;59(Suppl 7):119–32.

    PubMed  Google Scholar 

  50. Schiffer T, Schulte S, Hollmann W, Bloch W, Struder HK. Effects of strength and endurance training on brain-derived neurotrophic factor and insulin-like growth factor 1 in humans. Horm Metab Res. 2009;41(3):250–4.

    Article  CAS  PubMed  Google Scholar 

  51. Rojas Vega S, Knicker A, Hollmann W, Bloch W, Struder HK. Effect of resistance exercise on serum levels of growth factors in humans. Horm Metab Res. 2010;42(13):982–6.

    Article  CAS  PubMed  Google Scholar 

  52. Yarrow JF, White LJ, McCoy SC, Borst SE. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neurosci Lett. 2010;479(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  53. Church DD, Hoffman JR, Mangine GT, Jajtner AR, Townsend JR, Beyer KS, et al. Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. J Appl Physiol (1985). 2016;121(1):123–8.

    Article  Google Scholar 

  54. Lodo L, Moreira A, Bacurau RFP, Capitani CD, Barbosa WP, Massa M, et al. Resistance exercise intensity does not influence neurotrophic factors response in equated volume schemes. J Hum Kinetics. 2020;74:227–36.

    Article  Google Scholar 

  55. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002;25(6):295–301.

    Article  CAS  PubMed  Google Scholar 

  56. Dyer AH, Vahdatpour C, Sanfeliu A, Tropea D. The role of insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience. 2016;14(325):89–99.

    Article  CAS  Google Scholar 

  57. Cetinkaya C, Sisman AR, Kiray M, Camsari UM, Gencoglu C, Baykara B, et al. Positive effects of aerobic exercise on learning and memory functioning, which correlate with hippocampal IGF-1 increase in adolescent rats. Neurosci Lett. 2013;9(549):177–81.

    Article  CAS  Google Scholar 

  58. Uysal N, Agilkaya S, Sisman AR, Camsari UM, Gencoglu C, Dayi A, et al. Exercise increases leptin levels correlated with IGF-1 in hippocampus and prefrontal cortex of adolescent male and female rats. J Chem Neuroanat. 2017;81:27–33.

    Article  CAS  PubMed  Google Scholar 

  59. Sonntag WE, Lynch CD, Cooney PT, Hutchins PM. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology. 1997;138(8):3515–20.

    Article  CAS  PubMed  Google Scholar 

  60. Sonntag WE, Ramsey M, Carter CS. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev. 2005;4(2):195–212.

    Article  CAS  PubMed  Google Scholar 

  61. Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci. 2000;20(8):2926–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen MJ, Russo-Neustadt AA. Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors. 2007;25(2):118–31.

    Article  CAS  PubMed  Google Scholar 

  63. de Almeida AA, Gomes da Silva S, Lopim GM, Vannucci Campos D, Fernandes J, Cabral FR, et al. Physical exercise alters the activation of downstream proteins related to BDNF-TrkB signaling in male Wistar rats with epilepsy. J Neurosci Res. 2018;96(5):911–20.

    Article  PubMed  CAS  Google Scholar 

  64. Kelty TJ, Schachtman TR, Mao X, Grigsby KB, Childs TE, Olver TD, et al. Resistance-exercise training ameliorates LPS-induced cognitive impairment concurrent with molecular signaling changes in the rat dentate gyrus. J Appl Physiol (1985). 2019;127(1):254–63.

    Article  CAS  Google Scholar 

  65. Stein AM, Silva TMV, Coelho FGM, Arantes FJ, Costa JLR, Teodoro E, et al. Physical exercise, IGF-1 and cognition A systematic review of experimental studies in the elderly. Dement Neuropsychol. 2018;12(2):114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tsai CL, Wang CH, Pan CY, Chen FC. The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Front Behav Neurosci. 2015;9:23.

    PubMed  PubMed Central  Google Scholar 

  68. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, et al. Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer’s disease. J Alzheimers Dis. 2010;22(2):569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rahe J, Becker J, Fink GR, Kessler J, Kukolja J, Rahn A, et al. Cognitive training with and without additional physical activity in healthy older adults: cognitive effects, neurobiological mechanisms, and prediction of training success. Front Aging Neurosci. 2015;7:187.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Maass A, Duzel S, Brigadski T, Goerke M, Becke A, Sobieray U, et al. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage. 2016;1(131):142–54.

    Article  CAS  Google Scholar 

  71. Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun. 2013;28:90–9.

    Article  CAS  PubMed  Google Scholar 

  72. Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci. 2003;18:2803–12.

    Article  PubMed  Google Scholar 

  73. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A. 2002;99(18):11946–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet. 2004;36(8):827–35.

    Article  CAS  PubMed  Google Scholar 

  75. Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R, et al. Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci U S A. 2011;108(12):5081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Richardson RS, Wagner H, Mudaliar SR, Henry R, Noyszewski EA, Wagner PD. Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise. Am J Physiol. 1999;277(6):H2247–52.

    CAS  PubMed  Google Scholar 

  77. Jensen L, Pilegaard H, Neufer PD, Hellsten Y. Effect of acute exercise and exercise training on VEGF splice variants in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2004;287(2):R397-402.

    Article  CAS  PubMed  Google Scholar 

  78. Gustafsson T, Knutsson A, Puntschart A, Kaijser L, Nordqvist AC, Sundberg CJ, et al. Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training. Pflugers Arch. 2002;444(6):752–9.

    Article  CAS  PubMed  Google Scholar 

  79. Richardson RS, Wagner H, Mudaliar SR, Saucedo E, Henry R, Wagner PD. Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. Am J Physiol Heart Circ Physiol. 2000;279(2):H772–8.

    Article  CAS  PubMed  Google Scholar 

  80. Kidgell DJ, Pearce AJ. What has transcranial magnetic stimulation taught us about neural adaptations to strength training? A brief review. J Strength Cond Res. 2011;25(11):3208–17.

    Article  PubMed  Google Scholar 

  81. Carroll TJ, Selvanayagam VS, Riek S, Semmler JG. Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiol (Oxf). 2011;202(2):119–40.

    Article  CAS  Google Scholar 

  82. Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;406(6792):147–50.

    Article  CAS  PubMed  Google Scholar 

  83. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–99.

    Article  CAS  PubMed  Google Scholar 

  84. Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology. 2007;68(7):484–8.

    Article  PubMed  Google Scholar 

  85. Rothwell JC, Day BL, Thompson PD, Kujirai T. Short latency intracortical inhibition: one of the most popular tools in human motor neurophysiology. J Physiol. 2009;587(1):11–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jensen JL, Marstrand PC, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol (1995). 2005;99(4):1558–68.

    Article  Google Scholar 

  87. Carroll TJ, Barton J, Hsu M, Lee M. The effect of strength training on the force of twitches evoked by corticospinal stimulation in humans. Acta Physiol (Oxf). 2009;197(2):161–73.

    Article  CAS  Google Scholar 

  88. Kidgell DJ, Pearce AJ. Corticospinal properties following short-term strength training of an intrinsic hand muscle. Hum Movement Sci. 2010;29(5):631–41.

    Article  Google Scholar 

  89. Penzer F, Duchateau J, Baudry S. Effects of short-term training combining strength and balance exercises on maximal strength and upright steadiness in elderly adults. Exp Gerontol. 2015;61(1):38–46.

    Article  PubMed  Google Scholar 

  90. Ackerley SJ, Stinear CM, Byblow WD. Promoting use-dependent plasticity with externally-paced training. Clin Neurophysiol. 2011;122(12):2462–8.

    Article  PubMed  Google Scholar 

  91. Tallent J, Goodall S, Gibbon KC, Hortobagyi T, Howatson G. Enhanced corticospinal excitability and volitional drive in response to shortening and lengthening strength training and changes following detraining. Front Physiol. 2017;8:57.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Latella C, Goodwill AM, Muthalib M, Hendy AM, Major B, Nosaka K, et al. Effects of eccentric versus concentric contractions of the biceps brachii on intracortical inhibition and facilitation. Scand J Med Sci Sports. 2018;7:11.

    Google Scholar 

  93. Hendy AM, Kidgell DJ. Anodal tDCS applied during strength training enhances motor cortical plasticity. Med Sci Sport Exerc. 2013;45(9):1721–9.

    Article  Google Scholar 

  94. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A-Biol. 2006;61(11):1166–70.

    Article  Google Scholar 

  95. Nocera J, Crosson B, Mammino K, McGregor KM. Changes in cortical activation patterns in language areas following an aerobic exercise intervention in older adults. Neural Plast. 2017;2017:6340302.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bolandzadeh N, Tam R, Handy TC, Nagamatsu LS, Hsu CL, Davis JC, et al. Resistance training and white matter lesion progression in older women: exploratory analysis of a 12-month randomized controlled trial. J Am Geriatr Soc. 2015;63(10):2052–60.

    Article  PubMed  Google Scholar 

  97. Gourgouvelis J, Yielder P, Murphy B. Exercise promotes neuroplasticity in both healthy and depressed brains: an fMRI pilot study. Neural Plast. 2017;2017:8305287.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, et al. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology. 2005;64(9):1563–72.

    Article  CAS  PubMed  Google Scholar 

  99. Suo C, Singh MF, Gates N, Wen W, Sachdev P, Brodaty H, et al. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol Psychiatry. 2016;21(11):1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu-Ambrose T, Nagamatsu LS, Voss MW, Khan KM, Handy TC. Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiol Aging. 2012;33(8):1690–8.

    Article  PubMed  Google Scholar 

  101. Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci. 2010;4:19.

    PubMed  PubMed Central  Google Scholar 

  102. Hausman HK, O’Shea A, Kraft JN, Boutzoukas EM, Evangelista ND, Van Etten EJ, et al. The role of resting-state network functional connectivity in cognitive aging. Front Aging Neurosci. 2020;12:177.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sheppard JM, Triplett NT. Program design for resistance training. In: Essentials of strength training and conditioning. 4th ed. Champaign, Illinois: Human Kinetics; 2016.

    Google Scholar 

  104. Tsai CL, Wang CH, Pan CY, Chen FC, Huang TH, Chou FY. Executive function and endocrinological responses to acute resistance exercise. Front Behav Neurosci. 2014;8:262.

    PubMed  PubMed Central  Google Scholar 

  105. Harveson AT, Hannon JC, Brusseau TA, Podlog L, Papadopoulos C, Durrant LH, et al. Acute effects of 30 minutes resistance and aerobic exercise on cognition in a high school sample. Res Q Exerc Sport. 2016;87(2):214–20.

    Article  PubMed  Google Scholar 

  106. Hsieh S, Chang Y, Hung T, Fang C. The effects of acute resistance exercise on young and older males’ working memory. Psych Sport Exerc. 2016;22:286–93.

    Article  Google Scholar 

  107. Brush CJ, Olson RL, Ehmann PJ, Osovsky S, Alderman BL. Dose-response and time course effects of acute resistance exercise on executive function. J Sport Exerc Psychol. 2016;38(4):396–408.

    Article  PubMed  Google Scholar 

  108. Pontifex MB, Hillman CH, Fernhall B, Thompson KM, Valentini TA. The effect of acute aerobic and resistance exercise on working memory. Med Sci Sports Exerc. 2009;41(4):927–34.

    Article  PubMed  Google Scholar 

  109. Chang YK, Etnier JL. Exploring the dose-response relationship between resistance exercise intensity and cognitive function. J Sport Exerc Psychol. 2009;31(5):640–56.

    Article  PubMed  Google Scholar 

  110. Johnson L, Addamo PK, Selva Raj I, Borkoles E, Wyckelsma V, Cyarto E, et al. An acute bout of exercise improves the cognitive performance of older adults. J Aging Phys Act. 2016;24(4):591–8.

    Article  PubMed  Google Scholar 

  111. Chang YK, Tsai CL, Huang CC, Wang CC, Chu IH. Effects of acute resistance exercise on cognition in late middle-aged adults: general or specific cognitive improvement? J Sci Med Sport. 2014;17(1):51–5.

    Article  PubMed  Google Scholar 

  112. Chang YK, Ku PW, Tomporowski PD, Chen FT, Huang CC. Effects of acute resistance exercise on late-middle-age adults’ goal planning. Med Sci Sports Exerc. 2012;44(9):1773–9.

    Article  PubMed  Google Scholar 

  113. Ziegler G, Dahnke R, Gaser C. Alzheimer’s disease neuroimaging I. Models of the aging brain structure and individual decline. Front Neuroinform. 2012;6:3.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Barha CK, Davis JC, Falck RS, Nagamatsu LS, Liu-Ambrose T. Sex differences in exercise efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017;46:71–85.

    Article  PubMed  Google Scholar 

  115. Smolarek Ade C, Ferreira LH, Mascarenhas LP, McAnulty SR, Varela KD, Dangui MC, et al. The effects of strength training on cognitive performance in elderly women. Clin Interv Aging. 2016;11:749–54.

    Article  PubMed  Google Scholar 

  116. Broadhouse KM, Singh MF, Suo C, Gates N, Wen W, Brodaty H, et al. Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. Neuroimage Clin. 2020;25:102182.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Coetsee C, Terblanche E. The effect of three different exercise training modalities on cognitive and physical function in a healthy older population. Eur Rev Aging Phys Act. 2017;14:13.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Barha CK, Falck RS, Skou ST, Liu-Ambrose T. Personalising exercise recommendations for healthy cognition and mobility in aging: time to address sex and gender (Part 1). Br J Sports Med. 2021;55(6):300–1.

    Article  PubMed  Google Scholar 

  119. Barha CK, Falck RS, Skou ST, Liu-Ambrose T. Personalising exercise recommendations for healthy cognition and mobility in ageing: time to consider one’s pre-existing function and genotype (Part 2). Br J Sports Med. 2021;55(6):301–3.

    Article  PubMed  Google Scholar 

  120. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30.

    Article  PubMed  Google Scholar 

  121. Best JR, Nagamatsu LS, Liu-Ambrose T. Improvements to executive function during exercise training predict maintenance of physical activity over the following year. Front Hum Neurosci. 2014;8:353.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Barha CK, Galea LA, Nagamatsu LS, Erickson KI, Liu-Ambrose T. Personalising exercise recommendations for brain health: considerations and future directions. Br J Sports Med. 2017;51(8):636–9.

    Article  PubMed  Google Scholar 

  123. Myers TR, Schneider MG, Schmale MS, Hazell TJ. Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females. J Strength Cond Res. 2015;29(6):1592–600.

    Article  PubMed  Google Scholar 

  124. WHO guidelines on physical activity and sedentary behaviour. https://www.who.int/publications-detail-redirect/9789240015128. Accessed 19 Aug 2021.

Download references

Acknowledgements

This paper is dedicated to Eve and Freya Maczohan, who were born during the conceptualisation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Peng Teo.

Ethics declarations

Funding

Helen Macpherson is supported by the NHMRC-ARC Dementia Training Fellowship. No specific sources of funding were used to assist in the preparation of this article.

Conflict of interest

Zi-Siong Chow, Ashleigh Moreland, Helen Macpherson and Wei-Peng Teo declare that they have no conflicts of interest relevant to the content of this review.

Author contributions

Z-SC, ATM and W-PT were involved in the conceptualisation and writing of the manuscript. ATM and HM were involved with refining the manuscript and revision of manuscript drafts. All co-authors approved the final draft of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, ZS., Moreland, A.T., Macpherson, H. et al. The Central Mechanisms of Resistance Training and Its Effects on Cognitive Function. Sports Med 51, 2483–2506 (2021). https://doi.org/10.1007/s40279-021-01535-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01535-5

Navigation