Skip to main content
Log in

Resting Oxygen Uptake Value of 1 Metabolic Equivalent of Task in Older Adults: A Systematic Review and Descriptive Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 17 January 2022

A Letter to the Editor to this article was published on 17 January 2022

Abstract

Background

It is important for sport scientists and health professionals to have estimative methods for energy demand during different physical activities. The metabolic equivalent of task (MET) provides a feasible approach for classifying activity intensity as a multiple of the resting metabolic rate (RMR). RMR is generally assumed to be 3.5 mL of oxygen per kilogram of body mass per minute (mL O2 kg−1 min−1), a value that has been criticized and considered to be overestimated in the older adult population. However, there has been no comprehensive effort to review available RMR estimations, equivalent to 1 MET, obtained in the older adult population.

Objective

The aim of this review was to examine the existing evidence reporting measured RMR values in the older adult population and to provide descriptive estimates of 1 MET.

Methods

A systematic review was conducted by searching PubMed, Web of Science, Scopus, CINAHL, SPORTDiscus, and Cochrane Library, from database inception to July 2021. To this end, original research studies assessing RMR in adults ≥ 60 years old using indirect calorimetry and reporting results in mL O2 kg−1 min−1 were sought.

Results

Twenty-three eligible studies were identified, including a total of 1091 participants (426 men). All but two studies reported RMR values lower than the conventional 3.5 mL O2 kg−1 min−1. The overall weighted average 1 MET value obtained from all included studies was 2.7 ± 0.6 mL O2 kg−1 min−1; however, when considering best practice studies, this value was 11% lower (2.4 ± 0.3 mL O2 kg−1 min−1).

Conclusion

Based on the results of this systematic review, we would advise against the application of the standard value of 1 MET (3.5 mL O2 kg−1 min−1) in people ≥ 60 years of age and encourage the direct assessment of RMR using indirect calorimetry while adhering to evidence-based best practice recommendations. When this is not possible, assuming an overall value of 2.7 mL O2 kg−1 min−1 might be reasonable. Systematic review registration: International Prospective Register of Systematic Reviews on 30 September 2020, with registration number CRD42020206440.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kohl HW 3rd, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305. https://doi.org/10.1016/s0140-6736(12)60898-8.

    Article  PubMed  Google Scholar 

  2. Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE. Sedentary behavior: emerging evidence for a new health risk. Mayo Clin Proc. 2010;85(12):1138–41. https://doi.org/10.4065/mcp.2010.0444.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43(1):1.

    PubMed  Google Scholar 

  4. Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56(11):2655–67. https://doi.org/10.2337/db07-0882.

    Article  CAS  PubMed  Google Scholar 

  5. de Rezende LF, Rodrigues Lopes M, Rey-López JP, Matsudo VK, Luiz OC. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9(8): e105620. https://doi.org/10.1371/journal.pone.0105620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev. 2017;97(4):1351–402. https://doi.org/10.1152/physrev.00019.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ. 2019;366: l4570. https://doi.org/10.1136/bmj.l4570.

    Article  PubMed  PubMed Central  Google Scholar 

  8. McArdle WD, Katch FI, Katch VL. Essentials of exercise physiology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  9. Farkas GJ, Pitot MA, Gater DR Jr. A systematic review of the accuracy of estimated and measured resting metabolic rate in chronic spinal cord injury. Int J Sport Nutr Exerc Metab. 2019;29(5):548–58. https://doi.org/10.1123/ijsnem.2018-0242.

    Article  CAS  PubMed  Google Scholar 

  10. Jetté M, Sidney K, Blümchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol. 1990;13(8):555–65. https://doi.org/10.1002/clc.4960130809.

    Article  PubMed  Google Scholar 

  11. Byrne NM, Hills AP, Hunter GR, Weinsier RL, Schutz Y. Metabolic equivalent: one size does not fit all. J Appl Physiol (1985). 2005;99(3):1112–9. https://doi.org/10.1152/japplphysiol.00023.2004.

    Article  Google Scholar 

  12. Patterson JA, Naughton J, Pietras RJ, Gunnar RM. Treadmill exercise in assessment of the functional capacity of patients with cardiac disease. Am J Cardiol. 1972;30(7):757–62. https://doi.org/10.1016/0002-9149(72)90151-8.

    Article  CAS  PubMed  Google Scholar 

  13. Kozey S, Lyden K, Staudenmayer J, Freedson P. Errors in MET estimates of physical activities using 3.5 ml x kg(-1) x min(-1) as the baseline oxygen consumption. J Phys Act Health. 2010;7(4):508–16. https://doi.org/10.1123/jpah.7.4.508.

    Article  PubMed  Google Scholar 

  14. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, et al. 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81. https://doi.org/10.1249/MSS.0b013e31821ece12.

    Article  PubMed  Google Scholar 

  15. Keys A, Taylor HL, Grande F. Basal metabolism and age of adult man. Metabolism. 1973;22(4):579–87. https://doi.org/10.1016/0026-0495(73)90071-1.

    Article  CAS  PubMed  Google Scholar 

  16. Manini TM. Energy expenditure and aging. Ageing Res Rev. 2010;9(1):1–11. https://doi.org/10.1016/j.arr.2009.08.002.

    Article  CAS  PubMed  Google Scholar 

  17. Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol. 2005;68:123–48. https://doi.org/10.1016/s0070-2153(05)68005-2.

    Article  CAS  PubMed  Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7): e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fullmer S, Benson-Davies S, Earthman CP, Frankenfield DC, Gradwell E, Lee PS, et al. Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals. J Acad Nutr Diet. 2015;115(9):1417-46.e2. https://doi.org/10.1016/j.jand.2015.04.003.

    Article  PubMed  Google Scholar 

  20. Logan S, Spriet L. Omega-3 fatty acid supplementation for 12 weeks increases resting and exercise metabolic rate in healthy community-dwelling older females. PLoS One. 2015;10(12): e0144828. https://doi.org/10.1371/journal.pone.0144828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abizanda P, Romero L, Sanchez-Jurado PM, Flores Ruano T, Salmeron Rios S, Fernandez SM. Energetics of aging and frailty: the FRADEA study. J Gerontol Ser A Biol Sci Med Sci. 2016;71(6):787–96. https://doi.org/10.1093/gerona/glv182.

    Article  Google Scholar 

  22. Aguilar-Farias N, Brown WJ, Skinner TL, Peeters G. Metabolic equivalent values of common daily activities in middle-age and older adults in free-living environments: a pilot study. J Phys Act Health. 2019;16(3):222–9. https://doi.org/10.1123/jpah.2016-0400.

    Article  PubMed  Google Scholar 

  23. Ashley J, Kim Y, Gonzales JU. Impact of L-citrulline supplementation on oxygen uptake kinetics during walking. Appl Physiol Nutr Metab. 2018;43(6):631–7. https://doi.org/10.1139/apnm-2017-0696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avelar NC, Simão AP, Tossige-Gomes R, Neves CD, Mezencio B, Szmuchrowski L, et al. Oxygen consumption and heart rate during repeated squatting exercises with or without whole-body vibration in the elderly. J Strength Cond Res. 2011;25(12):3495–500. https://doi.org/10.1519/JSC.0b013e3182176664.

    Article  PubMed  Google Scholar 

  25. Barnett A, van den Hoek D, Barnett D, Cerin E. Measuring moderate-intensity walking in older adults using the ActiGraph accelerometer. BMC Geriatr. 2016;16(1):211. https://doi.org/10.1186/s12877-016-0380-5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bartolomeu RF, Barbosa TM, Morais JE, Lopes VP, Bragada JA, Costa MJ. The aging influence on cardiorespiratory, metabolic, and energy expenditure adaptations in head-out aquatic exercises: differences between young and elderly women. Women Health. 2017;57(3):377–91. https://doi.org/10.1080/03630242.2016.1164272.

    Article  PubMed  Google Scholar 

  27. Campbell JA, D’Acquisto LJ, D’Acquisto DM, Cline MG. Metabolic and cardiovascular response to shallow water exercise in young and older women. Med Sci Sports Exerc. 2003;35(4):675–81. https://doi.org/10.1249/01.Mss.0000058359.87713.99.

    Article  PubMed  Google Scholar 

  28. Chow H-W, Ho C-H. Does the use of outdoor fitness equipment by older adults qualify as moderate to vigorous physical activity? PLoS One. 2018. https://doi.org/10.1371/journal.pone.0196507.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cortes CW, Mehal W, Wang RY, Poznek EJ, Bradley KD, Goetz JM, et al. Reliability of exercise cardiopulmonary responses in older persons with moderate-to-heavy chronic disease burdens. Meas Phys Educ Exerc Sci. 1997;1(3):153.

    Article  Google Scholar 

  30. Cunha FA, Gomes GSM, Carvalho J, da Silva NSL. Concurrent exercise circuit protocol performed in public fitness facilities meets the American College of Sports Medicine guidelines for energy cost and metabolic intensity among older adults in Rio de Janeiro City. Appl Physiol Nutr Metab. 2019;44(5):477–84. https://doi.org/10.1139/apnm-2018-0513.

    Article  CAS  PubMed  Google Scholar 

  31. Hall KS, Howe CA, Rana SR, Martin CL, Morey MC. METs and accelerometry of walking in older adults: standard versus measured energy cost. Med Sci Sports Exerc. 2013;45(3):574–82. https://doi.org/10.1249/MSS.0b013e318276c73c.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hooker SP, Feeney A, Hutto B, Pfeiffer KA, McIver K, Heil DP, et al. Validation of the actical activity monitor in middle-aged and older adults. J Phys Act Health. 2011;8(3):372–81.

    Article  PubMed  Google Scholar 

  33. Kwan M, Woo J, Kwok T. The standard oxygen consumption value equivalent to one metabolic equivalent (3.5 ml/min/kg) is not appropriate for elderly people. Int J Food Sci Nutr. 2004;55(3):179–82. https://doi.org/10.1080/09637480410001725201.

    Article  CAS  PubMed  Google Scholar 

  34. Lerma NL, Swartz AM, Rowley TW, Hotaka M, Strath SJ. Increasing the energy expenditure of seated activities in older adults with a portable elliptical device. J Aging Phys Act. 2017;25(1):99–104. https://doi.org/10.1123/japa.2015-0277.

    Article  PubMed  Google Scholar 

  35. Migueles JH, Cadenas-Sanchez C, Alcantara JMA, Leal-Martín J, Mañas A, Ara I, et al. Calibration and cross-validation of accelerometer cut-points to classify sedentary time and physical activity from hip and non-dominant and dominant wrists in older adults. Sensors (Basel). 2021. https://doi.org/10.3390/s21103326.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nakagata T, Yamada Y, Naito H. Metabolic equivalents of body weight resistance exercise with slow movement in older adults using indirect calorimetry. Appl Physiol Nutr Metab. 2019;44(11):1254–7. https://doi.org/10.1139/apnm-2018-0882.

    Article  PubMed  Google Scholar 

  37. Panayiotou G, Paschalis V, Nikolaidis MG, Theodorou AA, Deli CK, Fotopoulou N, et al. No adverse effects of statins on muscle function and health-related parameters in the elderly: an exercise study. Scand J Med Sci Sports. 2013;23(5):556–67.

    CAS  PubMed  Google Scholar 

  38. Park SA, Lee KS, Son KC. Determining exercise intensities of gardening tasks as a physical activity using metabolic equivalents in older adults. HortScience. 2011;46(12):1706–10. https://doi.org/10.21273/hortsci.46.12.1706.

    Article  Google Scholar 

  39. Sergi G, Coin A, Sarti S, Perissinotto E, Peloso M, Mulone S, et al. Resting VO2, maximal VO2 and metabolic equivalents in free-living healthy elderly women. Clin Nutr. 2010;29(1):84–8. https://doi.org/10.1016/j.clnu.2009.07.010.

    Article  PubMed  Google Scholar 

  40. Taylor LM, Maddison R, Pfaeffli LA, Rawstorn JC, Gant N, Kerse NM. Activity and energy expenditure in older people playing active video games. Arch Phys Med Rehabil. 2012;93(12):2281–6. https://doi.org/10.1016/j.apmr.2012.03.034.

    Article  PubMed  Google Scholar 

  41. Trutschnigg B, Kilgour RD, Morais JA, Lucar E, Hornby L, Molla H, et al. Metabolic, nutritional and inflammatory characteristics in elderly women with advanced cancer. J Geriatr Oncol. 2013;4(2):183–9. https://doi.org/10.1016/j.jgo.2012.09.002.

    Article  PubMed  Google Scholar 

  42. Yeung SSY, Reijnierse EM, Trappenburg MC, Meskers CGM, Maier AB. Clinical determinants of resting metabolic rate in geriatric outpatients. Arch Gerontol Geriatr. 2020;89: 104066. https://doi.org/10.1016/j.archger.2020.104066.

    Article  PubMed  Google Scholar 

  43. Elia M, Ritz P, Stubbs RJ. Total energy expenditure in the elderly. Eur J Clin Nutr. 2000;54(Suppl 3):S92-103. https://doi.org/10.1038/sj.ejcn.1601030.

    Article  PubMed  Google Scholar 

  44. Arciero PJ, Goran MI, Poehlman ET. Resting metabolic rate is lower in women than in men. J Appl Physiol (1985). 1993;75(6):2514–20. https://doi.org/10.1152/jappl.1993.75.6.2514.

    Article  CAS  Google Scholar 

  45. Nielsen S, Hensrud DD, Romanski S, Levine JA, Burguera B, Jensen MD. Body composition and resting energy expenditure in humans: role of fat, fat-free mass and extracellular fluid. Int J Obes Relat Metab Disord. 2000;24(9):1153–7. https://doi.org/10.1038/sj.ijo.0801317.

    Article  CAS  PubMed  Google Scholar 

  46. Illner K, Brinkmann G, Heller M, Bosy-Westphal A, Müller MJ. Metabolically active components of fat free mass and resting energy expenditure in nonobese adults. Am J Physiol Endocrinol Metab. 2000;278(2):E308–15. https://doi.org/10.1152/ajpendo.2000.278.2.E308.

    Article  CAS  PubMed  Google Scholar 

  47. Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX, et al. Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol. 1998;275(2):E249–58. https://doi.org/10.1152/ajpendo.1998.275.2.E249.

    Article  CAS  PubMed  Google Scholar 

  48. Müller MJ, Bosy-Westphal A, Kutzner D, Heller M. Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obes Rev. 2002;3(2):113–22. https://doi.org/10.1046/j.1467-789x.2002.00057.x.

    Article  PubMed  Google Scholar 

  49. He Q, Heshka S, Albu J, Boxt L, Krasnow N, Elia M, et al. Smaller organ mass with greater age, except for heart. J Appl Physiol (1985). 2009;106(6):1780–4. https://doi.org/10.1152/japplphysiol.90454.2008.

    Article  Google Scholar 

  50. Krems C, Luhrmann PM, Strassburg A, Hartmann B, Neuhauser-Berthold M. Lower resting metabolic rate in the elderly may not be entirely due to changes in body composition. Eur J Clin Nutr. 2005;59(2):255–62. https://doi.org/10.1038/sj.ejcn.1602066.

    Article  CAS  PubMed  Google Scholar 

  51. Bosy-Westphal A, Eichhorn C, Kutzner D, Illner K, Heller M, Muller MJ. The age-related decline in resting energy expenditure in humans is due to the loss of fat-free mass and to alterations in its metabolically active components. J Nutr. 2003;133(7):2356–62.

    Article  CAS  PubMed  Google Scholar 

  52. St-Onge MP, Gallagher D. Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition. 2010;26(2):152–5. https://doi.org/10.1016/j.nut.2009.07.004.

    Article  CAS  PubMed  Google Scholar 

  53. Sparti A, DeLany JP, de la Bretonne JA, Sander GE, Bray GA. Relationship between resting metabolic rate and the composition of the fat-free mass. Metabolism. 1997;46(10):1225–30. https://doi.org/10.1016/s0026-0495(97)90222-5.

    Article  CAS  PubMed  Google Scholar 

  54. Gong J, Zuo L, Guo Z, Zhang L, Li Y, Gu L, et al. Impact of disease activity on resting energy expenditure and body composition in adult Crohn’s disease: a prospective longitudinal assessment. JPEN J Parenter Enteral Nutr. 2015;39(6):713–8. https://doi.org/10.1177/0148607114528360.

    Article  PubMed  Google Scholar 

  55. Cao DX, Wu GH, Zhang B, Quan YJ, Wei J, Jin H, et al. Resting energy expenditure and body composition in patients with newly detected cancer. Clin Nutr. 2010;29(1):72–7. https://doi.org/10.1016/j.clnu.2009.07.001.

    Article  PubMed  Google Scholar 

  56. Bogardus C, Taskinen MR, Zawadzki J, Lillioja S, Mott D, Howard BV. Increased resting metabolic rates in obese subjects with non-insulin-dependent diabetes mellitus and the effect of sulfonylurea therapy. Diabetes. 1986;35(1):1–5. https://doi.org/10.2337/diab.35.1.1.

    Article  CAS  PubMed  Google Scholar 

  57. Zampino M, AlGhatrif M, Kuo PL, Simonsick EM, Ferrucci L. Longitudinal changes in resting metabolic rates with aging are accelerated by diseases. Nutrients. 2020. https://doi.org/10.3390/nu12103061.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. https://doi.org/10.1093/gerona/56.3.m146.

    Article  CAS  PubMed  Google Scholar 

  59. Weiss CO, Cappola AR, Varadhan R, Fried LP. Resting metabolic rate in old-old women with and without frailty: variability and estimation of energy requirements. J Am Geriatr Soc. 2012;60(9):1695–700. https://doi.org/10.1111/j.1532-5415.2012.04101.x.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Starling RD. Energy expenditure and aging: effects of physical activity. Int J Sport Nutr Exerc Metab. 2001;11(Suppl):S208–17. https://doi.org/10.1123/ijsnem.11.s1.s208.

    Article  PubMed  Google Scholar 

  61. Garcia-Garcia FJ, Avila GG, Alfaro-Acha A, Andres MA, Aparicio ME, et al. The prevalence of frailty syndrome in an older population from Spain The Toledo Study for Healthy Aging. J Nutr Health Aging. 2011;15(10):852–6. https://doi.org/10.1007/s12603-011-0075-8.

    Article  CAS  PubMed  Google Scholar 

  62. Steffl M, Bohannon RW, Sontakova L, Tufano JJ, Shiells K, Holmerova I. Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin Interv Aging. 2017;12:835–45. https://doi.org/10.2147/cia.S132940.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Smith L, Tully M, Jacob L, Blackburn N, Adlakha D, Caserotti P, et al. The association between sedentary behavior and sarcopenia among adults aged ≥65 years in low- and middle-income countries. Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17051708.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 2016;23(6):1034–47. https://doi.org/10.1016/j.cmet.2016.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gallagher D, Allen A, Wang Z, Heymsfield SB, Krasnow N. Smaller organ tissue mass in the elderly fails to explain lower resting metabolic rate. Ann N Y Acad Sci. 2000;904:449–55. https://doi.org/10.1111/j.1749-6632.2000.tb06499.x.

    Article  CAS  PubMed  Google Scholar 

  66. Delsoglio M, Achamrah N, Berger MM, Pichard C. Indirect calorimetry in clinical practice. J Clin Med. 2019;8(9):1387. https://doi.org/10.3390/jcm8091387.

    Article  CAS  PubMed Central  Google Scholar 

  67. Pedrianes-Martin PB, Perez-Valera M, Morales-Alamo D, Martin-Rincon M, Perez-Suarez I, Serrano-Sanchez JA, et al. Resting metabolic rate is increased in hypertensive patients with overweight or obesity: potential mechanisms. Scand J Med Sci Sports. 2021;31(7):1461–70. https://doi.org/10.1111/sms.13955.

    Article  PubMed  Google Scholar 

  68. Bielinski R, Schutz Y, Jéquier E. Energy metabolism during the postexercise recovery in man. Am J Clin Nutr. 1985;42(1):69–82. https://doi.org/10.1093/ajcn/42.1.69.

    Article  CAS  PubMed  Google Scholar 

  69. Belza A, Frandsen E, Kondrup J. Body fat loss achieved by stimulation of thermogenesis by a combination of bioactive food ingredients: a placebo-controlled, double-blind 8-week intervention in obese subjects. Int J Obes. 2007;31(1):121–30. https://doi.org/10.1038/sj.ijo.0803351.

    Article  CAS  Google Scholar 

  70. Collins LC, Walker J, Stamford BA. Smoking multiple high- versus low-nicotine cigarettes: Impact on resting energy expenditure. Metabolism. 1996;45(8):923–6. https://doi.org/10.1016/S0026-0495(96)90256-5.

    Article  CAS  PubMed  Google Scholar 

  71. Kashiwazaki H, Dejima Y, Suzuki T. Influence of upper and lower thermoneutral room temperatures (20 degrees C and 25 degrees C) on fasting and post-prandial resting metabolism under different outdoor temperatures. Eur J Clin Nutr. 1990;44(5):405–13.

    CAS  PubMed  Google Scholar 

  72. Ooijen AMJC-V, Westerterp KR, Wouters L, Schoffelen PFM, van Steenhoven AA, van Lichtenbelt WDM. Heat production and body temperature during cooling and rewarming in overweight and lean men. Obesity. 2006;14(11):1914–20. https://doi.org/10.1038/oby.2006.223.

    Article  Google Scholar 

  73. Taguri E, Tanaka S, Ohkawara K, Ishikawa-Takata K, Hikihara Y, Miyake R, et al. Validity of physical activity indices for adjusting energy expenditure for body size: do the indices depend on body size? J Physiol Anthropol. 2010;29(3):109–17. https://doi.org/10.2114/jpa2.29.109.

    Article  PubMed  Google Scholar 

  74. Sujatha T, Shatrugna V, Venkataramana Y, Begum N. Energy expenditure on household, childcare and occupational activities of women from urban poor households. Br J Nutr. 2000;83(5):497–503. https://doi.org/10.1017/s0007114500000635.

    Article  CAS  PubMed  Google Scholar 

  75. Sanchez-Delgado G, Alcantara JMA, Ortiz-Alvarez L, Xu H, Martinez-Tellez B, Labayen I, et al. Reliability of resting metabolic rate measurements in young adults: Impact of methods for data analysis. Clin Nutr. 2018;37(5):1618–24. https://doi.org/10.1016/j.clnu.2017.07.026.

    Article  PubMed  Google Scholar 

  76. Ainsworth BE, Haskell WL, Leon AS, Jacobs DR Jr, Montoye HJ, Sallis JF, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc. 1993;25(1):71–80. https://doi.org/10.1249/00005768-199301000-00011.

    Article  CAS  PubMed  Google Scholar 

  77. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498-504. https://doi.org/10.1097/00005768-200009001-00009.

    Article  CAS  PubMed  Google Scholar 

  78. Kozey SL, Lyden K, Howe CA, Staudenmayer JW, Freedson PS. Accelerometer output and MET values of common physical activities. Med Sci Sports Exerc. 2010;42(9):1776–84. https://doi.org/10.1249/MSS.0b013e3181d479f2.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Westerterp KR. Physical activity assessment with accelerometers. Int J Obes Relat Metab Disord. 1999;23(Suppl 3):S45–9. https://doi.org/10.1038/sj.ijo.0800883.

    Article  PubMed  Google Scholar 

  80. Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821–45. https://doi.org/10.1007/s40279-017-0716-0.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Copeland JL, Esliger DW. Accelerometer assessment of physical activity in active, healthy older adults. J Aging Phys Act. 2009;17(1):17–30. https://doi.org/10.1123/japa.17.1.17.

    Article  PubMed  Google Scholar 

  82. Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, Inc accelerometer. Med Sci Sports Exerc. 1998;30(5):777–81. https://doi.org/10.1097/00005768-199805000-00021.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Ara.

Ethics declarations

Funding

This work was supported by the Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), by the Ministerio de Educación y Ciencia (Red EXERNET DEP2005-00046), the Junta de Comunidades de Castilla-La Mancha (SBPLY/19/180501/000312), and by FEDER funds from the European Union (CB16/10/00477 and CB16/10/00456). JLM received a PhD grant from the Universidad de Castilla-La Mancha, Spain (2019-PREDUCLM-11385) and MM from the Ministerio de Ciencia e Innovacion (FPU19/01276). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of interests

Javier Leal-Martín, Miguel Muñoz-Muñoz, Sarah Kozey Keadle, Francisco Amaro-Gahete, Luis M. Alegre, Asier Mañas, and Ignacio Ara declare that they have no conflicts of interest.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

JLM drafted the original manuscript. JLM and MM performed the literature search, selected articles, appraised their quality and extracted data. AM, SKK, and FAG performed major manuscript corrections. JLM and AM contributed to conception of the study, interpreted the data, and revised and edited the manuscript. LMA contributed to the conception and design of the study and revised and edited the manuscript. IA provided funding, revised the manuscript, and coordinated the study. All authors read and approved the final manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal-Martín, J., Muñoz-Muñoz, M., Keadle, S.K. et al. Resting Oxygen Uptake Value of 1 Metabolic Equivalent of Task in Older Adults: A Systematic Review and Descriptive Analysis. Sports Med 52, 331–348 (2022). https://doi.org/10.1007/s40279-021-01539-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01539-1

Navigation