Skip to main content
Log in

Consistency between dynamical and thermodynamical stabilities for charged self-gravitating perfect fluid

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The entropy principle shows that, for self-gravitating perfect fluid, the Einstein field equations can be derived from the extrema of the total entropy, and the thermodynamical stability criterion are equivalent to the dynamical stability criterion. In this paper, we recast the dynamical criterion for the charged self-gravitating perfect fluid in Einstein–Maxwell theory, and further give the criterion of the star with barotropic condition. In order to obtain the thermodynamical stability criterion, first we get the general formula of the second variation of the total entropy for charged perfect fluid case, and then obtain the thermodynamical criterion for radial perturbation. We show that these two stability criterions are the same, which suggest that the inherent connection between gravity and thermodynamic even when the electric field is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jacobson, T.: Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  2. Jacobson, T.: Entanglement equilibrium and the Einstein equation. Phys. Rev. Lett. 116, 201101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Sorkin, R.D., Wald, R.M., Zhang, Z.J.: Entropy of self-gravitating radiation. Gen. Relativ. Gravit. 13, 1127 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gao, S.: General maximum entropy principle for self-gravitating perfect fluid. Phys. Rev. D 84, 104023 (2011)

    Article  ADS  Google Scholar 

  5. Fang, X., Gao, S.: General proof of the entropy principle for self-gravitating fluid in static spacetimes. Phys. Rev. D 90, 044013 (2014)

    Article  ADS  Google Scholar 

  6. Fang, X., Gao, S.: Proof of entropy principle in Einstein–Maxwell theory. Phys. Rev. D 92, 024044 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cao, L.M., Xu, J., Zeng, Z.: Maximum entropy principle for self-gravitating perfect fluid in Lovelock gravity. Phys. Rev. D 87, 064005 (2013)

    Article  ADS  Google Scholar 

  8. Cao, L.M., Xu, J.: General proof of (maximum) entropy principle in Lovelock gravity. Phys. Rev. D 91, 044029 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Fang, X., Guo, M., Jing, J.: General proof of the entropy principle for self-gravitating fluid in f(R) gravity. J. High Energy Phys. 08, 163 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chandrasekhar, S.: Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity. Phys. Rev. Lett. 12, 114 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  11. Friedman, J.L.: Generic instability of rotating relativistic stars. Commun. Math. Phys. 62, 247 (1978)

    Article  ADS  Google Scholar 

  12. Friedman, J.L., Schutz, B.F.: On the stability of relativistic systems. Astrophys. J. 200, 204 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  13. Friedman, J.L., Schutz, B.F.: Langrangian perturbation theory of nonrelativistic fluids. Astrophys. J. 221, 937 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  14. Friedman, J.L., Schutz, B.F.: Secular instability of rotating Newtonian stars. Astrophys. J. 222, 281 (1978)

    Article  ADS  Google Scholar 

  15. Serfert, M.D., Wald, R.M.: General variational principle for spherically symmetric perturbations in diffeomorphism covariant theories. Phys. Rev. D 75, 084029 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Green, S.R., Schiffrin, J.S., Wald, R.M.: Dynamic and thermodynamic stability of relativistic, perfect fluid stars. Class. Quantum Grav. 31, 035023 (2014)

    Article  ADS  Google Scholar 

  17. Hollands, S., Wald, R.M.: Stability of black holes and black branes. Commun. Math. Phys. 321, 629 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Roupas, Z.: Thermodynamical instabilities of perfect fluid spheres in general relativity. Class. Quantum Grav. 30, 115018 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Yabushita, S.: Pulsational instability of isothermal gas spheres within the framework of general relativity. MNRAS 165, 17 (1973)

    Article  ADS  Google Scholar 

  20. Fang, X., He, X., Jing, J.: Thermodynamical stability for a perfect fluid. Eur. Phys. J. C 77, 893 (2017)

    Article  ADS  Google Scholar 

  21. Fang, X., He, X., Jing, J.: Consistency between dynamical and thermodynamical stabilities for perfect fluid in f(R) theories. Eur. Phys. J. C 78, 623 (2018)

    Article  ADS  Google Scholar 

  22. de Felice, F., Liu, S., Yu, Y.: Relativistic charged spheres: II. Regularity and stability. Class. Quant. Grav. 16, 2669–2680 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wald, R.M.: General Relativity. University of Chicago, Chicago (1984)

    Book  Google Scholar 

Download references

Acknowledgements

We thank Xiaokai He for some useful discussion. This work was supported by National Natural Science Foundation of China (NSFC) with Grants No. 11705053 and No. 12035005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongjun Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Explicit expression for each term of \(\delta ^2S\)

Appendix A: Explicit expression for each term of \(\delta ^2S\)

In this appendix, we would give the explicit expression of \(\delta ^2S\) in spherical symmetric case. Note that in the following calculation, we use the integration by parts and drop the boundary terms, and also consider that the Tolman’s law is also valid, \(T^{-1}=\chi =e^{\Psi }\). We denote that the n-th term of the right hand of Eq. (35) as \(P_n\), and simply write the integral \(\int _0^R dr\) as \(\int _r\). Together with Eqs. (36) and (38), we obtain

$$\begin{aligned} \begin{aligned} P_1&= \int _C\frac{2}{T}\delta \rho \delta \sqrt{h} \\&=4\pi \int _r 4\pi \frac{1}{r}e^{\Psi +3\Lambda }\frac{\partial }{\partial {r}}\left[ r^2\xi \left( p+\rho \right) \right] ^2 -8\pi {re^{\Psi +4\Lambda }}nqQ\xi ^2(p+\rho ) \\&=4\pi \int _r -48\pi ^2{r^4}e^{\Psi +5\Lambda }(p+\rho )^3\xi ^2+4\pi {r^4}e^{\Psi +3\Lambda } (p+\rho )^2\xi ^2\left( \frac{2\Psi '}{r}+\frac{1}{r^2}\right) \\&\quad -8\pi {re^{\Psi +4\Lambda }}nqQ\xi ^2(p+\rho ). \end{aligned}\nonumber \\ \end{aligned}$$
(A.1)

Considering Eq. (12) and the relation \(\Phi '=-e^{\Psi +\Lambda }\frac{Q}{r^2}\), we get

$$\begin{aligned} \begin{aligned} P_2&=\int _C2q\Phi \delta {n}\delta \sqrt{h}\\&=4\pi \int _r4\pi \frac{q\Phi }{nr}e^{2\Psi +3\Lambda }\left( p+\rho \right) \frac{\partial }{\partial {r}}\left( r^2e^{-\Psi }n\xi \right) ^2\\&=4\pi \int _r4\pi {r}nqQe^{\Psi +4\Lambda }\xi ^2\left( p+\rho \right) +4\pi {r^3}q\Phi \xi ^2n'e^{3\Lambda }\left( p+\rho \right) \\&\quad +4\pi {r^2}nq\Phi \xi ^2e^{3\Lambda }\left( p+\rho \right) \\&\quad -4\pi {r^3}nq\Phi \xi ^2e^{3\Lambda }\left( 2\Psi '+3\Lambda '\right) \left( p+\rho \right) -4\pi {r^3}nq\Phi \xi ^2e^{3\Lambda }\left( p+\rho \right) ', \end{aligned} \end{aligned}$$
(A.2)

and

$$\begin{aligned} \begin{aligned} P_3&= \int _C\sqrt{h}q\delta \Phi \delta {n} \\&=4\pi \int _r-qe^{\Psi +\Lambda }\delta \Phi \frac{\partial }{\partial {r}}\left( r^2e^{-\Psi }n\xi \right) \\&=4\pi \int _r-2rnqe^{\Lambda }\delta {\Phi }\xi -{r^2}n'qe^{\Lambda } \delta \Phi \xi +{r^2}nqe^{\Lambda }\delta \Phi \xi \Psi '-{r^2}nqe^{\Lambda }\delta \Phi \xi '. \end{aligned} \end{aligned}$$
(A.3)

The fourth term \(P_4\) and the fifth term \(P_5\) can easily be showed as

$$\begin{aligned} P_4= & {} \int _C-\frac{\sqrt{h}\delta {p}\delta \rho }{T(p+\rho )} =4\pi \int _r-r^2e^{\Psi +\Lambda }\frac{\delta {p}\delta \rho }{p+\rho } .\end{aligned}$$
(A.4)
$$\begin{aligned} P_5= & {} \int _C-\frac{\sqrt{h} n q \delta \Phi \delta \rho }{p+\rho } \nonumber \\= & {} 4\pi \int _r2rnqe^{\Lambda }\delta {\Phi }\xi +r^2nqe^{\Lambda } \delta {\Phi }\xi '\nonumber \\&+\frac{r^2nqe^{\Lambda }\delta {\Phi }}{p+\rho }\xi \left( p+\rho \right) '- \frac{e^{2\Lambda }n^2q^2Q\xi \delta {\Phi }}{p+\rho } . \end{aligned}$$
(A.5)

Using Eqs. (39), we have

$$\begin{aligned} \begin{aligned} P_6&=\int _C\frac{1}{T}\left( p+\rho +q\Phi {Tn}\right) \delta ^2\sqrt{h}\\&=4\pi \int _r 48\pi ^2r^4e^{\Psi +5\Lambda }\xi ^2\left( p+\rho \right) ^3-4\pi {r^3} e^{\Psi +3\Lambda }\xi \left( p+\rho \right) \left( \delta {p}+\delta \rho \right) \\&\quad -4\pi {r^3}e^{\Psi +3\Lambda }\left( p+\rho \right) ^2\delta \xi \\&\quad +48\pi ^2r^4e^{5\Lambda }nq\Phi \xi ^2\left( p+\rho \right) ^2 -4\pi {r^3}e^{3\Lambda }nq\Phi \xi \left( \delta {p}+\delta \rho \right) \\&\quad -4\pi {r^3}e^{3\Lambda }\left( p+\rho \right) nq\Phi \delta \xi . \end{aligned} \end{aligned}$$
(A.6)

Together with Eqs. (14) and (40), we get

$$\begin{aligned} \begin{aligned} P_7&= \int _C\sqrt{h}q\Phi \delta ^2{n} \\&= 4\pi \int _r4\pi {r}n^2q^2\Phi {Q}\xi ^2{e^{4\Lambda }} +4\pi {r^3}nq{\Phi }e^{3\Lambda }\delta p \xi \\&\quad -4\pi {r^4}e^{3\Lambda }\xi ^2\left( p+\rho \right) nq\Phi \left( \frac{2\Psi '}{r} +\frac{1}{r^2}\right) \\&\quad +q\Phi \xi 'e^{\Psi +\Lambda }\frac{\partial }{\partial {r}}\left( r^2e^{-\Psi }n\xi \right) +q\Phi {\xi }e^{\Psi +\Lambda }\frac{\partial ^2}{\partial {r^2}}\left( r^2e^{-\Psi }n\xi \right) \\&\quad -{q\Phi }e^{\Psi +\Lambda }\frac{\partial }{\partial {r}}\left( r^2e^{-\Psi }n\delta \xi \right) . \end{aligned} \end{aligned}$$
(A.7)

And Eq. (37) yields

$$\begin{aligned} \begin{aligned} P_8&=\int _C\frac{\delta ^2\rho }{T}\sqrt{h}\\&=4\pi \int _r4{\pi }e^{\Psi +3\Lambda }r^3\xi \left( \delta {p}+\delta \rho \right) (p+\rho )\\&\quad +4{\pi }e^{\Psi +3\Lambda }r^3\delta \xi (p+\rho )^2 +e^{\Psi +2\Lambda }nqQ\delta \xi \\&\quad -4{\pi }e^{\Psi +3\Lambda }r^2n^2q^2\xi ^2-4 \pi {r}nqQ\xi ^2e^{\Psi +4\Lambda }(p+\rho )\\&\quad -\frac{1}{r^2}e^{2\Phi +2\Lambda }qQ\xi \frac{\partial }{\partial {r}}(r^2e^{-\Psi }{n\xi }). \end{aligned} \end{aligned}$$
(A.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Fang, X. & Jing, J. Consistency between dynamical and thermodynamical stabilities for charged self-gravitating perfect fluid. Gen Relativ Gravit 53, 81 (2021). https://doi.org/10.1007/s10714-021-02852-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02852-w

Keywords

Navigation