Skip to main content
Log in

Design of a Model of a Reconfigurable Computing Environment for Determining Image Gradient Characteristics

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A new approach to computing the gradient characteristics of a grayscale image as an array of features of an object of interest is considered. It is proposed to design a model of a reconfigurable computing environment that can simultaneously process each pixel of the source image in parallel mode and generate an array with gradient characteristics. Due to the architectural principles of model construction, the gradient is computed in a single clock cycle of the elementary calculator of the reconfigurable computing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. J. Chen and X. Ran, ‘‘Deep learning with edge computing: A review,’’ Proc. IEEE 107, 1655–1674 (2019). https://doi.org/10.1109/JPROC.2019.2921977

    Article  Google Scholar 

  2. E. Arnold, O. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and A. Mouzakitis, ‘‘A survey on 3D object detection methods for autonomous driving applications,’’ IEEE Trans. Intell. Transp. Syst. 20, 3782–3795 (2019). https://doi.org/10.1109/TITS.2019.2892405

    Article  Google Scholar 

  3. D. Li, D. Zhao, Q. Zhang, and Y. Chen, ‘‘Reinforcement learning and deep learning based lateral control for autonomous driving [Application notes],’’ IEEE Comput. Intell. Mag. 14, 83–98 (2019). https://doi.org/10.1109/MCI.2019.2901089

    Article  Google Scholar 

  4. C. You, J. Lu, D. Filev, and P. Tsiotras, ‘‘Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning,’’ Rob. Auton. Syst. 114, 1–18 (2019). https://doi.org/10.1016/j.robot.2019.01.003

    Article  Google Scholar 

  5. N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim, ‘‘Applications of deep reinforcement learning in communications and networking: A survey,’’ IEEE Commun. Surv. Tutorials 21, 3133–3174 (2019). https://doi.org/10.1109/COMST.2019.2916583

    Article  Google Scholar 

  6. V. A. Surin and A. N. Tyrsin, ‘‘Nonlinear filter model for digital imaging of contrast images,’’ Optoelectron., Instrum. Data Process. 54, 155–161 (2018). https://doi.org/10.3103/S8756699018020061

    Article  ADS  Google Scholar 

  7. J. S. Pershina, S. Ya. Kazdorf, and A. V. Lopota, ‘‘Methods of mobile robot visual navigation and environment mapping,’’ Optoelectron., Instrum. Data Process. 55, 181–188 (2019). https://doi.org/10.3103/S8756699019020109

    Article  ADS  Google Scholar 

  8. X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li, ‘‘Computer vision algorithms and hardware implementations: A survey,’’ Integration 69, 309–320 (2019). https://doi.org/10.1016/j.vlsi.2019.07.005

    Article  Google Scholar 

  9. H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, ‘‘A lightweight YOLOv2: A binarized CNN with a parallel support vector regression for an FPGA,’’ in Proc. of the ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays, Monterey, USA, 2018, pp. 31–40. https://doi.org/10.1145/3174243.3174266

  10. K. F. Lysakov, K. K. Oblaukhov, and M. Yu. Shadrin, ‘‘Implementation of FPGA algorithms for identification of image distortion due to compression,’’ Optoelectron., Instrum. Data Process. 56, 28–32 (2020). https://doi.org/10.3103/S8756699020010045

    Article  ADS  Google Scholar 

  11. N. Dalal and B. Triggs, ‘‘Histograms of oriented gradients for human detection,’’ in Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Diego, USA, 2005, pp. 886–893. https://doi.org/10.1109/CVPR.2005.177

  12. J. H. Luo, C. H. Lin, and X. Li, ‘‘Pure FPGA implementation of an HOG based real-time pedestrian detection system,’’ Sensors 18, 1174 (2018). https://doi.org/10.3390/s18041174

    Article  ADS  Google Scholar 

  13. S. V. Shidlovskiy, Automatic Control: Reconfigurable Structures (Tomsk Gos. Univ., Tomsk, 2006).

    Google Scholar 

  14. I. A. Kalyaev, I. I. Levin, E. A. Semernikov, and V. I. Shmoilov, Reconfigurable Multi-Pipeline Computational Structures (Izd-vo YuNTs RAN, Rostov-on-Don, 2008).

  15. V. G. Khoroshevsky, M. G. Kurnosov, and S. N. Mamoilenko, ‘‘Geographically-distributed multicluster computer system: Architecture and software,’’ Tomsk State Univ. J. Control Comput. Sci., No. 1, 79–84 (2011).

  16. D. V. Shashev and S. V. Shidlovskiy, ‘‘Morphological processing of binary images using reconfigurable computing environments,’’ Optoelectron., Instrum. Data Process. 51, 227–233 (2015). https://doi.org/10.3103/S8756699015030036

    Article  Google Scholar 

  17. S. V. Shidlovskiy, Automatic Control: Reconfigurable Structures in Systems with Distributed Parameters (Tomsk Gos. Univ., Tomsk, 2007).

    Google Scholar 

  18. L. Mennel, J. Symonowicz, S. Wachter, D. K. Polyushkin, A. J. Molina-Mendoza, and T. Mueller, ‘‘Ultrafast machine vision with 2D material neural network image sensors,’’ Nature 579, 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x

    Article  ADS  Google Scholar 

Download references

Funding

The work is supported by the Russian Foundation for Basic Research, project no. 19-37-90110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shidlovskiy.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarchuk, A.S., Shashev, D.V. & Shidlovskiy, S.V. Design of a Model of a Reconfigurable Computing Environment for Determining Image Gradient Characteristics. Optoelectron.Instrument.Proc. 57, 132–140 (2021). https://doi.org/10.3103/S8756699021020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021020047

Keywords:

Navigation