Skip to main content
Log in

A Method for Visualizing Multivolume Data and Functionally Defined Surfaces Using GPUs

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A method for visualizing multivolume data and functionally defined surface using graphics processing units is proposed. The method provides visualization of a large number of volumes, a complex of semi-transparent and functionally defined objects, of complex semi-transparent volumes, including intersections of volumes in constructive solid modeling. Simultaneous rendering of different volumes is more difficult than rendering of a single volume, because both intersecting and blending operations are required. Functionally defined surfaces are well suited for embedding external objects into volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. J. Kruger and R. Westermann, ‘‘Acceleration techniques for GPU-based volume rendering,’’ in Proc. of the 14th IEEE Conf. on Visualization, Seattle, USA, 2003, pp. 38–43. https://doi.org/10.1109/VISUAL.2003.1250384

  2. S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, ‘‘A simple and flexible volume rendering framework for graphics-hardware-based ray casting,’’ in Proc. of the 4th Eurographics, IEEE VGTC Conf. on Volume Graphics, New York, USA, 2005, pp. 187–195. https://doi.org/10.1109/VG.2005.194114

  3. B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C. Gee, ‘‘A reproducible evaluation of ANTs similarity metric performance in brain image registration,’’ Neuroimage 54, 2033–2044 (2011). https://doi.org/10.1016/j.neuroimage.2010.09.025

    Article  Google Scholar 

  4. R. J. Killiany, T. Gomez-Isla, M. Moss, R. Kikinis, T. Sandor, F. Jolesz, R. Tanzi, K. Jones, B. T. Hyman, and M. S. Albert, ‘‘Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease,’’ Ann. Neurology 47, 430–439 (2000). https://doi.org/10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I

    Article  Google Scholar 

  5. A. Leu and M. Chen, ‘‘Modelling and rendering graphics scenes composed of multiple volumetric datasets,’’ Comput. Graph. Forum. 18, 159–171 (1999). https://doi.org/10.1111/1467-8659.00366

    Article  Google Scholar 

  6. S. Grimm, S. Bruckner, A. Kanitsar, and M. E. Groller, ‘‘Flexible direct multi-volume rendering in interactive scenes,’’ in Proc. of the Vision, Modeling, and Visualization Conference (VMV 2004), Stanford, USA, 2004, pp. 386–379.

  7. S. I. Vyatkin, ‘‘Complex surface modeling using perturbation functions,’’ Optoelectron., Instrum. Data Process. 43, 226–231 (2007). https://doi.org/10.3103/S875669900703003X

    Article  Google Scholar 

  8. S. I. Vyatkin, ‘‘Conversion of functionally defined forms,’’ Software Syst. Comput. Methods, No. 4, 489–499 (2014). https://doi.org/10.7256/2305-6061.2014.4.13982

    Article  Google Scholar 

  9. S. I. Vyatkin and B. S. Dolgovesov, ‘‘Compression of geometric data with the use of perturbation functions,’’ Optoelectron., Instrum. Data Process. 54, 334–339 (2018). https://doi.org/10.3103/S8756699018040039

    Article  ADS  Google Scholar 

  10. S. I. Vyatkin, ‘‘Method of binary search for image elements of functionally defined objects using graphics processing units,’’ Optoelectron., Instrum. Data Process. 50, 606–612 (2014). https://doi.org/10.3103/S8756699014060090

    Article  Google Scholar 

  11. S. I. Vyatkin, ‘‘Recursive search method for the image elements of functionally defined surfaces,’’ Optoelectron., Instrum. Data Process. 53, 245–249 (2017). https://doi.org/10.3103/S8756699017030074

    Article  ADS  Google Scholar 

  12. G. Knittel, ‘‘VERVE: voxel engine for real-time visualization and examination,’’ Comput. Graph. Forum 12 (3), 37–48 (1993). https://doi.org/10.1111/1467-8659.1230037

    Article  Google Scholar 

  13. S. I. Vyatkin and B. S. Dolgovesov, ‘‘A 3D texture-based recursive multi-level ray casting algorithm,’’ in Proc. of the 2nd IASTED Int. Multi-Conf. on Automation, Control, and Information Technology Software Engineering (ACIT 2005), Novosibirsk, Russia, 2005, pp. 92–97.

  14. F. Roessler, R. P. Botchen, and T. Ertl, ‘‘Dynamic shader generation for GPU-based multi-volume ray casting,’’ IEEE Comput. Graph. Appl. 28 (5), 66–77 (2008). https://doi.org/10.1109/MCG.2008.96

    Article  Google Scholar 

  15. R. Brecheisen, B. Platel, A. Vilanova, and B. T. H. Romenij, ‘‘Flexible GPU-based multi-volume ray-casting,’’ in Proc. of the Vision, Modelling and Visualization Conf., Konstanz, Germany, 2008, pp. 1–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Vyatkin.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyatkin, S.I., Dolgovesov, B.S. A Method for Visualizing Multivolume Data and Functionally Defined Surfaces Using GPUs. Optoelectron.Instrument.Proc. 57, 141–148 (2021). https://doi.org/10.3103/S875669902102014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S875669902102014X

Keywords:

Navigation