Skip to main content
Log in

Electrochemiluminescent determination of prostate-specific antigen using Au@(MoS2/GO/o-MWNTs) nanohybrids as co-reaction accelerator and hyperbranched hybridization chain reaction for signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Three-dimensional flowerlike Au@(MoS2/GO/o-MWNTs) nanohybrids (abbreviated as AMGMs) were synthesized and then introduced into an electrochemiluminescence (ECL) system as a new co-reaction accelerator for the ultrasensitive prostate-specific antigen (PSA). The AMGMs not only served as a substrate with good conductivity and a large specific surface area for loading abundant primary antibodies but also acted as an effective co-reaction accelerator; the co-reaction accelerator could interact with a co-reactant rather than the luminophore to boost the generation of free radical intermediates, thereby producing abundant excited states of luminophores to amplify the ECL signal response. Additionally, an anticipated signal amplification strategy based on the hybridization chain reaction (HCR) was developed by gathering a large amount of a DNA initiator on gold nanoparticles. These gathered DNA initiators could generate multiple DNA concatemers and attach more signal molecules, which resulted in outstanding exponential signal amplification. Consequently, the ECL immunosensor demonstrated high sensitivity, with a linear range from 0.1 pg mL−1 to 50 ng mL−1 and a detection limit of 0.028 pg mL−1. In addition, the immunosensor displayed excellent stability and selectivity. It was evaluated by analyzing human serum sample. The recovery obtained was 98.80–112.00% and the RSD was 1.73–3.12%, indicating the immunosensor could be applied to the simultaneous detection of PSA in human serum samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang MC, Valenzuela LA, Murphy GP, Chu TM (1979) Purification of a human prostate specific antigen. Investig Urol 17:159–163

    CAS  Google Scholar 

  2. Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, Petros JA, Andriole GL (1991) Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. New Engl J Med 324:1156–1161

    Article  CAS  Google Scholar 

  3. Matsumoto K, Konishi N, Hiasa Y, Kimura E, Samori T (1999) A highly sensitive enzyme-linked immunoassay for serum free prostate specific antigen (f-PSA). Clin Chim Acta 281:57–69

    Article  CAS  Google Scholar 

  4. Kim J, Kim J, Rho THD, Lee JH (2014) Rapid chemiluminescent sandwich enzyme immunoassay capable of consecutively quantifying multiple tumor markers in a sample. Talanta 129:106–112

    Article  CAS  Google Scholar 

  5. Soukka T, Paukkunen J, Harma H, Lonnberg S, Lindroos H, Lovgren T (2001) Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticlelabel technology. Clin Chem 47:1269–1278

    Article  CAS  Google Scholar 

  6. Florentinus-Mefailosik A, Marshall JG (2014) Pyridoxamine-5-phosphate enzyme-linked immune mass spectrometric assay substrate for linear absolute quantification of alkaline phosphatase to the yoctomole range applied to prostate specific antigen. Anal Chem 86:10684–10691

    Article  Google Scholar 

  7. Miao W, Choi JP, Bard AJ (2002) Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisited - a new route involving TPrA•+ cation radicals. J Am Chem Soc 124:14478–14485

    Article  CAS  Google Scholar 

  8. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036

    Article  CAS  Google Scholar 

  9. Hu LZ, Xu GB (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39:3275–3304

    Article  CAS  Google Scholar 

  10. Irkham WT, Fiorani A, Valenti G, Paolucci F, Einaga Y (2016) Co-reactant-on-demand ECL: electrogenerated chemiluminescence by the in situ production of S2O82− at boron-doped diamond electrodes. J Am Chem Soc 138:15636–15641

    Article  CAS  Google Scholar 

  11. Li MX, Feng QM, Zhou Z, Zhao W, Xu JJ, Chen HY (2018) Plasmon-enhanced electrochemiluminescence for nucleic acid detection based on gold nanodendrites. Anal Chem 90:1340–1347

    Article  CAS  Google Scholar 

  12. Deiss F, LaFratta CN, Symer M, Blicharz TM, Sojic N, Walt DR (2009) Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc 131:6088–6089

    Article  CAS  Google Scholar 

  13. Lei YM, Wen RX, Zhou J, Chai YQ, Yuan R, Zhuo Y (2018) Silver ions as novel coreaction accelerator for remarkably enhanced electrochemiluminescence in a PTCA–S2O82− system and its application in an ultrasensitive assay for mercury ions. Anal Chem 90:6851–6858

    Article  CAS  Google Scholar 

  14. Yang SS, Jiang MH, Chai YQ, Yuan R, Zhuo Y (2018) Application of antibody-powered triplex-DNA nanomachine to electrochemiluminescence biosensor for the detection of anti-digoxigenin with improved sensitivity versus cycling strand displacement reaction. ACS Appl Mater Interfaces 10:38648–38655

    Article  CAS  Google Scholar 

  15. Zhao J, Da J, Yang SS, Lei YM, Chai YQ, Yuan R, Zhuo Y (2020) Efficient electrochemiluminescence of perylene nanocrystal entrapped in hierarchical porous Au nanoparticle-graphene oxide film for bioanalysis based on one-pot DNA amplification. Electrochim Acta 332:135389

    Article  CAS  Google Scholar 

  16. Wang YF, Zhang Y, Sha HF, Xiong X, Jia NQ (2019) Design and biosensing of a ratiometric electrochemiluminescence resonance energy transfer aptasensor between a g-C3N4 nanosheet and Ru@MOF for amyloid-β protein. ACS Appl Mater Interfaces 11:36299–36306

    Article  CAS  Google Scholar 

  17. Yang L, Jia Y, Wu D, Zhang Y, Ju HX, Du Y, Ma HM, Wei Q (2019) Synthesis and application of CeO2/SnS2 heterostructures as a highly efficient coreaction accelerator in the luminol-dissolved O2 system for ultrasensitive biomarkers immunoassay. Anal Chem 91:14066–14703

    Article  CAS  Google Scholar 

  18. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275

    Article  CAS  Google Scholar 

  19. Li SK, Liu ZT, Li JY, Chen AY, Chai YQ, Yuan R, Zhuo Y (2018) Enzyme-free target recycling and double-output amplification system for electrochemiluminescent assay of mucin 1 with MoS2 nanoflowers as co-reaction accelerator. ACS Appl Mater Interfaces 10:14483–14490

    Article  CAS  Google Scholar 

  20. Huang KJ, Wang L, Zhang JZ, Wang LL, Mo YP (2014) One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor. Energy 67:234–240

    Article  CAS  Google Scholar 

  21. Hong M, Xu LD, Xue QW, Li L, Tang B (2016) Fluorescence imaging of intracellular telomerase activity using enzyme-free signal amplification. Anal Chem 88:12177–12182

    Article  CAS  Google Scholar 

  22. He ZY, Cai Y, Yang ZM, Li PW, Lei HT, Liu WP, Liu YJ (2019) A dual-signal readout enzyme-free immunosensor based on hybridization chain reaction-assisted formation of copper nanoparticles for the detection of microcystin-LR. Biosens Bioelectron 126:151–159

    Article  CAS  Google Scholar 

  23. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278

    Article  CAS  Google Scholar 

  24. Lan FF, Sun GQ, Liang LL, Ge SG, Yan M, Yu JH (2016) Microfluidic paper-based analytical device for photoelectrochemical immunoassay with multiplex signal amplification using multibranched hybridization chain reaction and PdAu enzyme mimetics. Biosens Bioelectron 79:416–422

    Article  CAS  Google Scholar 

  25. Sun YY, Wu XH, Zhang K, Ren QX, Xie RG (2018) Electrochemiluminescent quaternary Cu-Zn-In-S nanocrystals as a sensing platform: enzyme-free and sensitive detection of the FLT3 gene based on triple signal amplification. Biosens Bioelectron 100:445–452

    Article  CAS  Google Scholar 

  26. Kim J, Byun S, Smith AJ, Yu J, Huang JX (2012) Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J Phys Chem Lett 4:1227–1232

    Article  Google Scholar 

  27. Yang WW, Wang JX, Zhao S, Sun YY, Sun CQ (2006) Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Electrochem Commun 8:665–672

    Article  CAS  Google Scholar 

  28. Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2:1825–1832

    Article  CAS  Google Scholar 

  29. Yu ZM, Wei XH, Yan JL, Tu YF (2012) Intensification of electrochemiluminescence of luminol on TiO2 supported Au atomic cluster nano-hybrid modified electrode. Analyst 137:1922–1929

    Article  CAS  Google Scholar 

  30. Xu XY, Hu JG, Yin ZY, Xu CX (2014) Photoanode current of large-area MoS2 ultrathin nanosheets with vertically mesh-shaped structure on indium tin oxide. ACS Appl Mater Interfaces 6:5983–5987

    Article  CAS  Google Scholar 

  31. Zhang R, Zhong X, Chen AY, Liu JL, Li SK, Chai YQ, Zhuo Y (2019) Novel Ru(bpy)2(cpaphen)2+/TPrA/TiO2 ternary ECL system: an efficient platform for the detection of glutathione with Mn2+ as substitute target. Anal Chem 91:3681–3686

    Article  CAS  Google Scholar 

  32. Yang JJ, Cao JT, Wang H, Liu YM, Ren SW (2017) Ferrocene-graphene sheets for high-efficiency quenching of electrochemiluminescence from au nanoparticles functionalized cadmium sulfide flower-like three dimensional assemblies and sensitive detection of prostate specific antigen. Talanta 167:325–332

    Article  CAS  Google Scholar 

  33. Xu DD, Deng YL, Li CY, Lin Y, Tang HW (2017) Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: a sensitive platform for one-step fluorescence detection of prostate specific antigen. Biosens Bioelectron 87:881–887

    Article  CAS  Google Scholar 

  34. Xu S, Liu Y, Wang T, Li J (2011) Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem 83:3817–3823

    Article  CAS  Google Scholar 

  35. Acevedo B, Perera Y, Ruiz M, Rojas G, Benitez J, Ayala M, Gavilondo J (2012) Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clin Chim Acta 317:55–63

    Article  Google Scholar 

  36. Hao YX, Yan PD, Zhang X, Shen HW, Gu CL, Zhang HQ, Zhang MH, Xiang H (2017) Ultrasensitive amperometric determination of PSA based on a signal amplification strategy using nanoflowers composed of single-strand DNA modified fullerene and methylene blue, and an improved surface-initiated enzymatic polymerization. Microchim Acta 184:4341–4349

    Article  CAS  Google Scholar 

  37. Zhang K, Lv S, Lin Z, Tang D (2017) CdS:Mn quantum dot-functionalized G-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens Bioelectron 95:34–40

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Liaoning BaiQianWan Talents Program, China (Grant No. 2020921098) and Program of Liaoning university of Traditional Chinese Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2046 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Qin, Y., Zhang, J. et al. Electrochemiluminescent determination of prostate-specific antigen using Au@(MoS2/GO/o-MWNTs) nanohybrids as co-reaction accelerator and hyperbranched hybridization chain reaction for signal amplification. Microchim Acta 188, 300 (2021). https://doi.org/10.1007/s00604-021-04957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04957-0

Keywords

Navigation