Skip to main content

Advertisement

Log in

Long Non-coding RNAs: Potential Players in Cardiotoxicity Induced by Chemotherapy Drugs

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

One of the most important side effects of chemotherapy is cardiovascular complications, such as cardiotoxicity. Many factors are involved in the pathogenesis of cardiotoxicity; one of the most important of which is long non-coding RNAs (lncRNAs). lncRNA has 200–1000 nucleotides. It is involved in important processes such as cell proliferation, regeneration and apoptosis; today it is used as a prognostic and diagnostic factor. A, various drugs by acting on lncRNAs can affect cells. Therefore, by accurately identifying IncRNAs function, we can play an effective role in preventing the development of cardiotoxicity-induced chemotherapy drugs, and use them as a therapeutic strategy to improve clinical symptoms and increase patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Norouzirad, R., Khazaei, Z., Mousavi, M., Adineh, H. A., Hoghooghi, M., Khabazkhoob, M., et al. (2017). Epidemiology of common cancers in Dezful County, Southwest of Iran. Immunopathologia Persa, 4(1), e10.

    Google Scholar 

  2. Štěrba, M., Popelová, O., Vávrová, A., Jirkovský, E., Kovaříková, P., Geršl, V., et al. (2013). Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxidants & Redox Signaling, 18(8), 899–929.

    Google Scholar 

  3. Braña, I., Zamora, E., Oristrell, G., & Tabernero, J. (2018). Cardiotoxicity. Side effects of medical cancer therapy (pp. 367–406). Springer.

    Google Scholar 

  4. Lotfian, S., Farmanara, H., Naderi, N., Solaymani-Dodran, M., & Shekarchizadeh, M. (2019). Association of body composition with quality of life, cardiovascular risk factors, and physical activity in patients with chronic heart failure. Journal of Preventive Epidemiology, 4(1), e09.

    Google Scholar 

  5. Haybar, H., Shahrabi, S., Rezaeeyan, H., Jodat, H., & Saki, N. (2019). Strategies to inhibit arsenic trioxide-induced cardiotoxicity in acute promyelocytic leukemia. Journal of Cellular Physiology, 234(9), 14500–14506.

    CAS  Google Scholar 

  6. Mancilla, T. R., Iskra, B., & Aune, G. J. (2011). Doxorubicin-induced cardiomyopathy in children. Comprehensive Physiology, 9(3), 905–931.

    Google Scholar 

  7. Xie, Z., Xia, W., & Hou, M. (2018). Long intergenic non-coding RNA-p21 mediates cardiac senescence via the Wnt/β-catenin signaling pathway in doxorubicin-induced cardiotoxicity. Molecular Medicine Reports, 17(2), 2695–2704.

    CAS  PubMed  Google Scholar 

  8. Wang, Q., Liu, L., Zhang, S., Ming, Y., Liu, S., Cheng, K., et al. (2020). Long noncoding RNA NEAT1 suppresses hepatocyte proliferation in fulminant hepatic failure through increased recruitment of EZH2 to the LATS2 promoter region and promotion of H3K27me3 methylation. Experimental & Molecular Medicine, 52(3), 461–472.

    CAS  Google Scholar 

  9. Zadeh, F. J., Mohammadtaghizadeh, M., Bahadori, H., Saki, N., & Rezaeeyan, H. (2020). The role of exogenous Fibrinogen in cardiac surgery: Stop bleeding or induce cardiovascular disease. Molecular Biology Reports, 47, 8189.

    CAS  PubMed  Google Scholar 

  10. Cai, L., Tu, L., Li, T., Yang, X., Ren, Y., Gu, R., et al. (2019). Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. International Immunopharmacology, 75, 105734.

    CAS  PubMed  Google Scholar 

  11. Sun, P., Wang, J., Guo, X., Chen, Y., Xing, C., & Gao, A. (2017). Benzene and its metabolite decreases cell proliferation via LncRNA-OBFC2A-mediated anti-proliferation effect involving NOTCH1 and KLF15. Oncotarget, 8(25), 40857.

    PubMed Central  PubMed  Google Scholar 

  12. Haybar, H., Rezaeeyan, H., Shahjahani, M., Shirzad, R., & Saki, N. (2019). T-bet transcription factor in cardiovascular disease: Attenuation or inflammation factor? Journal of Cellular Physiology, 234(6), 7915–7922.

    CAS  PubMed  Google Scholar 

  13. Zhang, F., Fu, X., Kataoka, M., Liu, N., Wang, Y., Gao, F., et al. (2021). Long noncoding RNA Cfast regulates cardiac fibrosis. Molecular Therapy-Nucleic Acids, 23, 377–392.

    CAS  PubMed  Google Scholar 

  14. Lu, Q., Huo, J., Liu, P., Bai, L., & Ma, A. (2020). lncRNA HOXB-AS3 protects doxorubicin-induced cardiotoxicity by targeting miRNA-875-3p. Experimental and Therapeutic Medicine, 19(2), 1388–1392.

    CAS  PubMed  Google Scholar 

  15. Chen, S., Wang, J., & Zhou, Y. (2019). Long non-coding RNA SNHG1 protects human AC16 cardiomyocytes from doxorubicin toxicity by regulating miR-195/Bcl-2 axis. Bioscience Reports, 39(7), BSR20191050.

    PubMed Central  PubMed  Google Scholar 

  16. Zhang, S., Yuan, Y., Zhang, Z., Guo, J., Li, J., Zhao, K., et al. (2019). LncRNA FOXC2-AS1 protects cardiomyocytes from doxorubicin-induced cardiotoxicity through activation of WNT1-inducible signaling pathway protein-1. Bioscience, Biotechnology, and Biochemistry, 83(4), 653–658.

    CAS  PubMed  Google Scholar 

  17. Li, J., Li, L., Li, X., & Wu, S. (2018). Long noncoding RNA LINC00339 aggravates doxorubicin-induced cardiomyocyte apoptosis by targeting MiR-484. Biochemical and Biophysical Research Communications, 503(4), 3038–3043.

    CAS  PubMed  Google Scholar 

  18. Zhan, J., Hu, P., & Wang, Y. (2020). lncRNA PVT1 aggravates doxorubicin-induced cardiomyocyte apoptosis by targeting the miR-187–3p/AGO1 axis. Molecular and Cellular Probes, 49, 101490.

    CAS  PubMed  Google Scholar 

  19. Aung, L.-H.-H., Chen, X., Liu, Z., Li, Z., & Li, P. (2020). Cardiac mitochondrial dynamic-related LncRNA (CMDL)-1 protects cardiomyocytes against apoptosis in doxorubicin-induced cardiotoxicity. Circulation, 142(Suppl_3), A16442.

    Google Scholar 

  20. King, B. L., Rosenstein, M. C., Smith, A. M., Dykeman, C. A., Smith, G. A., & Yin, V. P. (2018). RegenDbase: A comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa. NPJ Regenerative Medicine, 3(1), 1–13.

    Google Scholar 

  21. Geng, H., Bu, H.-F., Liu, F., Wu, L., Pfeifer, K., Chou, P. M., et al. (2018). In inflamed intestinal tissues and epithelial cells, interleukin 22 signaling increases expression of H19 long noncoding RNA, which promotes mucosal regeneration. Gastroenterology, 155(1), 144–155.

    CAS  PubMed  Google Scholar 

  22. Dey, B. K., Pfeifer, K., & Dutta, A. (2014). The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes & Development, 28(5), 491–501.

    Google Scholar 

  23. Huang, Y., Zheng, Y., Jia, L., & Li, W. (2015). Long noncoding RNA H 19 promotes osteoblast differentiation Via TGF-β1/S mad3/HDAC signaling pathway by deriving mi R-675. Stem Cells, 33(12), 3481–3492.

    CAS  PubMed  Google Scholar 

  24. Ghosh, T. K., Aparicio-Sánchez, J. J., Buxton, S., & Brook, J. D. (2019). HDAC4 and 5 repression of TBX5 is relieved by protein kinase D1. Scientific Reports, 9(1), 1–10.

    Google Scholar 

  25. Zhang, L. X., DeNicola, M., Qin, X., Du, J., Ma, J., Tina Zhao, Y., et al. (2014). Specific inhibition of HDAC4 in cardiac progenitor cells enhances myocardial repairs. American Journal of Physiology-Cell Physiology, 307(4), C358–C372.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Jia, L., Tian, Y., Chen, Y., & Zhang, G. (2018). The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-Catenin pathway. OncoTargets and Therapy, 11, 313.

    PubMed Central  PubMed  Google Scholar 

  27. Lu, Y.-F., Liu, Y., Fu, W.-M., Xu, J., Wang, B., Sun, Y.-X., et al. (2017). Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-β1 signaling. The FASEB Journal, 31(3), 954–964.

    CAS  PubMed  Google Scholar 

  28. Gilbert, R. W., Vickaryous, M. K., & Viloria-Petit, A. M. (2016). Signalling by transforming growth factor beta isoforms in wound healing and tissue regeneration. Journal of Developmental Biology, 4(2), 21.

    PubMed Central  Google Scholar 

  29. Tang, R., Zhang, G., Wang, Y.-C., Mei, X., & Chen, S.-Y. (2017). The long non-coding RNA GAS5 regulates transforming growth factor β (TGF-β)–induced smooth muscle cell differentiation via RNA Smad–binding elements. Journal of Biological Chemistry, 292(34), 14270–14278.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liang, W.-C., Fu, W.-M., Wang, Y.-B., Sun, Y.-X., Xu, L.-L., Wong, C.-W., et al. (2016). H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Scientific Reports, 6, 20121.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Bastakoty, D., & Young, P. P. (2016). Wnt/β-catenin pathway in tissue injury: Roles in pathology and therapeutic opportunities for regeneration. The FASEB Journal, 30(10), 3271–3284.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Yuan, J., Gao, Y., Sun, L., Jin, S., Zhang, X., Liu, C., et al. (2019). Wnt signaling pathway linked to intestinal regeneration via evolutionary patterns and gene expression in the sea cucumber Apostichopus japonicus. Frontiers in Genetics, 10, 112.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Ren, L., Chen, S., Liu, W., Hou, P., Sun, W., & Yan, H. (2019). Downregulation of long non-coding RNA nuclear enriched abundant transcript 1 promotes cell proliferation and inhibits cell apoptosis by targeting miR-193a in myocardial ischemia/reperfusion injury. BMC Cardiovascular Disorders, 19(1), 192.

    PubMed Central  PubMed  Google Scholar 

  34. Kikani, C. K., Wu, X., Fogarty, S., Kang, S. A. W., Dephoure, N., Gygi, S. P., et al. (2019). Activation of PASK by mTORC1 is required for the onset of the terminal differentiation program. Proceedings of the National Academy of Sciences USA, 116(21), 10382–10391.

    CAS  Google Scholar 

  35. Zanou, N., Schakman, O., Louis, P., Ruegg, U. T., Dietrich, A., Birnbaumer, L., et al. (2012). Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration. Journal of Biological Chemistry, 287(18), 14524–14534.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lund-Ricard, Y., Cormier, P., Morales, J., & Boutet, A. (2020). mTOR signaling at the crossroad between metazoan regeneration and human diseases. International Journal of Molecular Sciences, 21(8), 2718.

    PubMed Central  Google Scholar 

  37. Diana, Z. Y., & Kaestner, K. H. (2009). Foxa1 and Foxa2 control the differentiation of goblet and enteroendocrine L-and D-cells in mice. Gastroenterology, 137(6), 2052–2062.

    Google Scholar 

  38. Swarr, D. T., Herriges, M., Li, S., Morley, M., Fernandes, S., Sridharan, A., et al. (2019). The long noncoding RNA Falcor regulates Foxa2 expression to maintain lung epithelial homeostasis and promote regeneration. Genes & Development, 33(11–12), 656–668.

    CAS  Google Scholar 

  39. Chen, Y., Li, X., Li, B., Wang, H., Li, M., Huang, S., et al. (2019). Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling. Molecular Therapy, 27(1), 29–45.

    CAS  PubMed  Google Scholar 

  40. Chen, G., Li, H., Li, X., Li, B., Zhong, L., Huang, S., et al. (2018). Loss of long non-coding RNA CRRL promotes cardiomyocyte regeneration and improves cardiac repair by functioning as a competing endogenous RNA. Journal of Molecular and Cellular Cardiology, 122, 152–164.

    CAS  PubMed  Google Scholar 

  41. Cai, B., Ma, W., Ding, F., Zhang, L., Huang, Q., Wang, X., et al. (2018). The long noncoding RNA CAREL controls cardiac regeneration. Journal of the American College of Cardiology, 72(5), 534–550.

    PubMed  Google Scholar 

  42. Wang, J., Geng, Z., Weng, J., Shen, L., Li, M., Cai, X., et al. (2016). Microarray analysis reveals a potential role of LncRNAs expression in cardiac cell proliferation. BMC Developmental Biology, 16(1), 1–9.

    Google Scholar 

  43. Li, B., Hu, Y., Li, X., Jin, G., Chen, X., Chen, G., et al. (2018). Sirt1 antisense long noncoding RNA promotes cardiomyocyte proliferation by enhancing the stability of Sirt1. Journal of the American Heart Association, 7(21), e009700.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Wang, G.-Q., Wang, Y., Xiong, Y., Chen, X.-C., Ma, M.-L., Cai, R., et al. (2016). Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Scientific Reports, 6(1), 1–13.

    Google Scholar 

  45. Strzalka, W., & Ziemienowicz, A. (2011). Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation. Annals of Botany, 107(7), 1127–1140.

    CAS  PubMed  Google Scholar 

  46. Wang, H., Jin, Z., Pei, T., Song, W., Gong, Y., Chen, D., et al. (2019). Long noncoding RNAs C2dat1 enhances vascular smooth muscle cell proliferation and migration by targeting MiR-34a-5p. Journal of Cellular Biochemistry, 120(3), 3001–3008.

    CAS  PubMed  Google Scholar 

  47. Ponnusamy, M., Liu, F., Zhang, Y.H., Li, R.B., Zhai, M., Liu, F., et al. (2019). Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation, 139(23), 2668–2684.

    CAS  PubMed  Google Scholar 

  48. Zhou, H., Xiong, Y., Zhang, G., Liu, Z., Li, L., Hou, S., et al. (2020). Elevated expression of minichromosome maintenance 3 indicates poor outcomes and promotes G1/S cell cycle progression, proliferation, migration and invasion in colorectal cancer. Bioscience Reports. https://doi.org/10.1042/BSR20201503

  49. Guo, X., Piao, H., Zhang, Y., Sun, P., & Yao, B. (2020). Overexpression of microRNA-129-5p in glioblastoma inhibits cell proliferation, migration, and colony-forming ability by targeting ZFP36L1. Bosnian Journal of Basic Medical Sciences, 20(4), 459.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Zuo, Y., Li, Y., Zhou, Z., Ma, M., & Fu, K. (2017). Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomedicine & Pharmacotherapy, 95, 922–928.

    CAS  Google Scholar 

  51. Yu, J., Jin, T., & Zhang, T. (2020). Suppression of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) potentiates cell apoptosis and drug sensitivity to taxanes and adriamycin in breast cancer. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 26, e922672–e922681.

    CAS  Google Scholar 

  52. Liu, Y., Zhang, W., Liu, K., Liu, S., Ji, B., & Wang, Y. (2016). miR-138 suppresses cell proliferation and invasion by inhibiting SOX9 in hepatocellular carcinoma. American Journal of Translational Research, 8(5), 2159.

    PubMed Central  PubMed  Google Scholar 

  53. Wang, W., Zhao, L.-J., Tan, Y.-X., Ren, H., & Qi, Z.-T. (2012). MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis, 33(5), 1113–1120.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Haybar, H., Shahrabi, S., Rezaeeyan, H., Shirzad, R., & Saki, N. (2019). Endothelial cells: From dysfunction mechanism to pharmacological effect in cardiovascular disease. Cardiovascular Toxicology, 19(1), 13–22.

    CAS  PubMed  Google Scholar 

  55. Wang, X., Li, D., Chen, H., Wei, X., & Xu, X. (2019). Expression of long noncoding RNA LIPCAR promotes cell proliferation, cell migration, and change in phenotype of vascular smooth muscle cells. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 7645.

    CAS  Google Scholar 

  56. Gong, J., Wang, J., Liu, T., Hu, J., & Zheng, J. (2018). lncRNA FEZF1-AS1 contributes to cell proliferation, migration and invasion by sponging miR-4443 in hepatocellular carcinoma. Molecular Medicine Reports, 18(6), 5614–5620.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Liu, Y.-W., Xia, R., Lu, K., Xie, M., Yang, F., Sun, M., et al. (2017). LincRNA FEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Molecular Cancer, 16(1), 1–16.

    Google Scholar 

  58. Xu, Y., Zhang, G., Zou, C., Zhang, H., Gong, Z., Wang, W., et al. (2018). LncRNA MT1JP suppresses gastric cancer cell proliferation and migration through MT1JP/MiR-214-3p/RUNX3 axis. Cellular Physiology and Biochemistry, 46(6), 2445–2459.

    CAS  PubMed  Google Scholar 

  59. Zhu, D., Zhang, X., Lin, Y., Liang, S., Song, Z., & Dong, C. (2019). MT1JP inhibits tumorigenesis and enhances cisplatin sensitivity of breast cancer cells through competitively binding to miR-24-3p. American Journal of Translational Research, 11(1), 245.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Liu, Y., Cheng, T., Du, Y., Hu, X., & Xia, W. (2020). LncRNA LUCAT1/miR-181a-5p axis promotes proliferation and invasion of breast cancer via targeting KLF6 and KLF15. BMC Molecular and Cell Biology, 21(1), 1–11.

    Google Scholar 

  61. Liu, Y., Wen, J.-K., Dong, L.-H., Zheng, B., & Han, M. (2010). Krüppel-like factor (KLF) 5 mediates cyclin D1 expression and cell proliferation via interaction with c-Jun in Ang II-induced VSMCs. Acta Pharmacologica Sinica, 31(1), 10–18.

    PubMed  Google Scholar 

  62. He, X., Lian, Z., Yang, Y., Wang, Z., Fu, X., Liu, Y., et al. (2020). Long non-coding RNA PEBP1P2 suppresses proliferative VSMCs phenotypic switching and proliferation in atherosclerosis. Molecular Therapy-Nucleic Acids, 22, 84–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Wang, X., Xiao, H., Wu, D., Zhang, D., & Zhang, Z. (2020). miR-335-5p regulates cell cycle and metastasis in lung adenocarcinoma by targeting CCNB2. OncoTargets and Therapy, 13, 6255.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Zhang, L.-L., Zhang, L.-F., Guo, X.-H., Zhang, D.-Z., Yang, F., & Fan, Y.-Y. (2018). Downregulation of miR-335–5p by long noncoding RNA ZEB1-AS1 in gastric cancer promotes tumor proliferation and invasion. DNA and Cell Biology, 37(1), 46–52.

    PubMed  Google Scholar 

  65. Gao, J., Yuan, Y., Zhang, L., Yu, S., Lu, J., Feng, J., et al. (2020). Inhibition of ZEB1-AS1 confers cisplatin sensitivity in breast cancer by promoting microRNA-129–5p-dependent ZEB1 downregulation. Cancer Cell International. https://doi.org/10.1186/s12935-020-1164-8

    Article  PubMed Central  PubMed  Google Scholar 

  66. Abbas, N., Perbellini, F., & Thum, T. (2020). Non-coding RNAs: Emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Research in Cardiology, 115(5), 1–20.

    Google Scholar 

  67. Cui, K., & Zhu, G. (2020). LncRNA CTBP1-AS2 regulates miR-216a/PTEN to suppress ovarian cancer cell proliferation. Journal of Ovarian Research, 13(1), 1–6.

    Google Scholar 

  68. Hou, B.-H., Jian, Z.-X., Cui, P., Li, S.-J., Tian, R.-Q., & Ou, J.-R. (2015). miR-216a may inhibit pancreatic tumor growth by targeting JAK2. FEBS Letters, 589(17), 2224–2232.

    CAS  PubMed  Google Scholar 

  69. Wang, J., Chen, X., Shen, D., Ge, D., Chen, J., Pei, J., et al. (2019). A long noncoding RNA NR_045363 controls cardiomyocyte proliferation and cardiac repair. Journal of Molecular and Cellular Cardiology, 127, 105–114.

    CAS  PubMed  Google Scholar 

  70. Huang, H., Fan, X., Zhang, X., Xie, Y., & Ji, Z. (2020). LncRNA CARLo-7 facilitates proliferation, migration, invasion, and EMT of bladder cancer cells by regulating Wnt/β-catenin and JAK2/STAT3 signaling pathways. Translational Andrology and Urology, 9(5), 2251.

    PubMed Central  PubMed  Google Scholar 

  71. Shi, X., Pan, S., Li, L., Li, Y., Ma, W., Wang, H., et al. (2020). HIX003209 promotes vascular smooth muscle cell migration and proliferation through modulating miR-6089. Aging (Albany NY), 12(10), 8913.

    CAS  Google Scholar 

  72. Liu, Y., Cui, X., Wang, C., & Zhao, S. (2020). LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144–3p/FOXF1 axis in atherosclerosis. Biological Research. https://doi.org/10.1186/s40659-020-00306-2

    Article  PubMed Central  PubMed  Google Scholar 

  73. Wu, Y.-X., Zhang, S.-H., Cui, J., & Liu, F.-T. (2018). Long noncoding RNA XR007793 regulates proliferation and migration of vascular smooth muscle cell via suppressing miR-23b. Medical science monitor: International Medical Journal of Experimental and Clinical Research, 24, 5895.

    CAS  Google Scholar 

  74. Wang, Y., Yang, L., Chen, T., Liu, X., Guo, Y., Zhu, Q., et al. (2019). A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis. Molecular Cancer, 18(1), 1–16.

    PubMed Central  PubMed  Google Scholar 

  75. Song, E.-L., Xing, L., Wang, L., Song, W.-T., Li, D.-B., Wang, Y., et al. (2019). LncRNA ADAMTS9-AS2 inhibits cell proliferation and decreases chemoresistance in clear cell renal cell carcinoma via the miR-27a-3p/FOXO1 axis. Aging (Albany NY), 11(15), 5705.

    CAS  Google Scholar 

  76. Ren, L., Chen, S., Liu, W., Hou, P., Sun, W., & Yan, H. (2019). Downregulation of long non-coding RNA nuclear enriched abundant transcript 1 promotes cell proliferation and inhibits cell apoptosis by targeting miR-193a in myocardial ischemia/reperfusion injury. BMC Cardiovascular Disorders, 19(1), 1–8.

    Google Scholar 

  77. Niu, Y., Tang, G., Wu, X., & Wu, C. (2020). LncRNA NEAT1 modulates sorafenib resistance in hepatocellular carcinoma through regulating the miR-149-5p/AKT1 axis. Saudi Journal of Gastroenterology: Official Journal of the Saudi Gastroenterology Association, 26(4), 194.

    Google Scholar 

  78. Zeng, C., Liu, S., Lu, S., Yu, X., Lai, J., Wu, Y., et al. (2018). The c-Myc-regulated lncRNA NEAT1 and paraspeckles modulate imatinib-induced apoptosis in CML cells. Molecular Cancer, 17(1), 1–6.

    Google Scholar 

  79. Zhao, W., Li, W., Jin, X., Niu, T., Cao, Y., Zhou, P., et al. (2019). Silencing long non-coding RNA NEAT1 enhances the suppression of cell growth, invasion, and apoptosis of bladder cancer cells under cisplatin chemotherapy. International Journal of Clinical and Experimental Pathology, 12(2), 549.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Li, C., Zhang, Y., Tang, Y., Xiao, J., Gao, F., Ouyang, Y., et al. (2020). LncRNA CRNDE modulates cardiac progenitor cells’ proliferation and migration via the miR-181a/LYRM1 axis in hypoxia. Journal of Thoracic Disease, 12(5), 2614.

    PubMed Central  PubMed  Google Scholar 

  81. Han, S., Han, B., Li, Z., & Sun, D. (2019). Downregulation of long noncoding RNA CRNDE suppresses drug resistance of liver cancer cells by increasing microRNA-33a expression and decreasing HMGA2 expression. Cell Cycle, 18(19), 2524–2537.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Cui, N., Liu, J., Xia, H., & Xu, D. (2019). LncRNA SNHG20 contributes to cell proliferation and invasion by upregulating ZFX expression sponging miR-495-3p in gastric cancer. Journal of Cellular Biochemistry, 120(3), 3114–3123.

    CAS  PubMed  Google Scholar 

  83. Yang, X., Sun, L., Wang, L., Yao, B., Mo, H., & Yang, W. (2019). LncRNA SNHG7 accelerates the proliferation, migration and invasion of hepatocellular carcinoma cells via regulating miR-122–5p and RPL4. Biomedicine & Pharmacotherapy, 118, 109386.

    CAS  Google Scholar 

  84. Zhao, L., Han, T., Li, Y., Sun, J., Zhang, S., Liu, Y., et al. (2017). The IncRNA SNHG5/miR-32 axis regulates gastric cancer cell proliferation and migration by targeting KLF4. The FASEB Journal, 31(3), 893–903.

    CAS  PubMed  Google Scholar 

  85. Liu, Y., Cheng, G., Huang, Z., Bao, L., Liu, J., Wang, C., et al. (2020). Long noncoding RNA SNHG12 promotes tumour progression and sunitinib resistance by upregulating CDCA3 in renal cell carcinoma. Cell Death & Disease, 11(7), 1–17.

    CAS  Google Scholar 

  86. Wu, T., Wang, S., Wang, L., Zhang, W., Chen, W., Lv, X., et al. (2020). Long Noncoding RNA (lncRNA) CTTN-IT1 elevates skeletal muscle satellite cell proliferation and differentiation by acting as ceRNA for YAP1 through absorbing miR-29a in Hu sheep. Frontiers in Genetics, 11, 843.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. You, G., Long, X., Song, F., Huang, J., Tian, M., Xiao, Y., et al. (2020). Long noncoding RNA EZR-AS1 regulates the proliferation, migration, and apoptosis of human venous endothelial cells via SMYD3. BioMed Research International, 2020, 1–11.

    Google Scholar 

  88. Zou, X., Guo, Z. H., Li, Q., & Wang, P. S. (2020). Long noncoding RNA LINC00460 modulates MMP-9 to promote cell proliferation, invasion and apoptosis by targeting miR-539 in papillary thyroid cancer. Cancer Management and Research, 12, 199.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Wang, R., Huang, Z., Qian, C., Wang, M., Zheng, Y., Jiang, R., et al. (2020). LncRNA WEE2-AS1 promotes proliferation and inhibits apoptosis in triple negative breast cancer cells via regulating miR-32-5p/TOB1 axis. Biochemical and Biophysical Research Communications, 526(4), 1005–1012.

    CAS  PubMed  Google Scholar 

  90. Wang, R., Chen, X., Xu, T., Xia, R., Han, L., Chen, W., et al. (2016). MiR-326 regulates cell proliferation and migration in lung cancer by targeting phox2a and is regulated by HOTAIR. American Journal of Cancer Research, 6(2), 173.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Wu, X., Cao, X., & Chen, F. (2017). WITHDRAWN: LncRNA-HOTAIR activates tumor cell proliferation and migration by suppressing MiR-326 in cervical cancer. Oncology Research. https://doi.org/10.3727/096504017x15037515496840

    Article  PubMed Central  PubMed  Google Scholar 

  92. Li, Z., Qian, J., Li, J., & Zhu, C. (2019). Knockdown of lncRNA-HOTAIR downregulates the drug-resistance of breast cancer cells to doxorubicin via the PI3K/AKT/mTOR signaling pathway. Experimental and Therapeutic Medicine, 18(1), 435–442.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Zhang, J., Chen, K., Tang, Y., Luan, X., Zheng, X., Lu, X., et al. (2021). LncRNA-HOTAIR activates autophagy and promotes the imatinib resistance of gastrointestinal stromal tumor cells through a mechanism involving the miR-130a/ATG2B pathway. Cell Death & Disease, 12(4), 1–14.

    Google Scholar 

  94. Lei, H., Gao, Y., & Xu, X. (2017). LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochimica et Biophysica Sinica, 49(7), 588–597.

    CAS  PubMed  Google Scholar 

  95. Guo, S., Zhang, L., Zhang, Y., Wu, Z., He, D., Li, X., et al. (2019). Long non-coding RNA TUG1 enhances chemosensitivity in non-small cell lung cancer by impairing microRNA-221-dependent PTEN inhibition. Aging (Albany NY), 11(18), 7553.

    CAS  Google Scholar 

  96. Gu, L., Li, Q., Liu, H., Lu, X., & Zhu, M. (2020). Long noncoding RNA TUG1 promotes autophagy-associated paclitaxel resistance by sponging miR-29b-3p in ovarian cancer cells. OncoTargets and Therapy, 13, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Guo, X., Liu, Y., Zheng, X., Han, Y., & Cheng, J. (2020). HOTTIP knockdown inhibits cell proliferation and migration via regulating miR-490–3p/HMGB1 axis and PI3K-AKT signaling pathway in ox-LDL-induced VSMCs. Life Sciences, 248, 117445.

    CAS  PubMed  Google Scholar 

  98. Chen, X., Liu, Y., Zhang, Q., Liu, B., Cheng, Y., Zhang, Y., et al. (2020). Exosomal long noncoding RNA HOTTIP increases resistance of colorectal cancer cells to mitomycin via impairing miR-214-mediated degradation of KPNA3. Frontiers in Cell and Developmental Biology, 8, 1492.

    Google Scholar 

  99. Yin, F., Zhang, Q., Dong, Z., Hu, J., & Ma, Z. (2020). LncRNA HOTTIP participates in cisplatin resistance of tumor cells by regulating miR-137 expression in pancreatic Cancer. OncoTargets and Therapy, 13, 2689.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Li, Z., Zhao, L., & Wang, Q. (2016). Overexpression of long non-coding RNA HOTTIP increases chemoresistance of osteosarcoma cell by activating the Wnt/β-catenin pathway. American Journal of Translational Research, 8(5), 2385.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Xuan, W., Zhou, C., & You, G. (2020). LncRNA LINC00668 promotes cell proliferation, migration, invasion ability and EMT process in hepatocellular carcinoma by targeting miR-532–5p/YY1 axis. Bioscience Reports, 40(5), BSR20192697.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Ma, J., Li, T., Han, X., & Yuan, H. (2018). Knockdown of LncRNA ANRIL suppresses cell proliferation, metastasis, and invasion via regulating miR-122-5p expression in hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 144(2), 205–214.

    CAS  PubMed  Google Scholar 

  103. Miao, J.-T., Gao, J.-H., Chen, Y.-Q., Chen, H., Meng, H.-Y., & Lou, G. (2019). LncRNA ANRIL affects the sensitivity of ovarian cancer to cisplatin via regulation of let-7a/HMGA2 axis. Bioscience Reports, 39(7), 20182101.

    Google Scholar 

  104. Yan, S., Tang, Z., Chen, K., Liu, Y., Yu, G., Chen, Q., et al. (2018). Long noncoding RNA MIR31HG inhibits hepatocellular carcinoma proliferation and metastasis by sponging microRNA-575 to modulate ST7L expression. Journal of Experimental & Clinical Cancer Research, 37(1), 1–16.

    Google Scholar 

  105. Liu, Z., Wang, Y., Wang, L., Yao, B., Sun, L., Liu, R., et al. (2019). Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging miR-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 38(1), 1–15.

    Google Scholar 

  106. Jin, X., Qiao, L., Fan, H., Liao, C., Zheng, J., Wang, W., et al. (2021). Long non-coding RNA MSC-AS1 facilitates the proliferation and glycolysis of gastric cancer cells by regulating PFKFB3 expression. International Journal of Medical Sciences, 18(2), 546.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Zhang, S., & Guo, W. (2019). Long non-coding RNA MEG3 suppresses the growth of glioma cells by regulating the miR-96-5p/MTSS1 signaling pathway. Molecular Medicine Reports, 20(5), 4215–4225.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Lü, M., Tang, B., Zeng, S., Hu, C., Xie, R., Wu, Y., et al. (2016). Long noncoding RNA BC032469, a novel competing endogenous RNA, upregulates hTERT expression by sponging miR-1207-5p and promotes proliferation in gastric cancer. Oncogene, 35(27), 3524–3534.

    PubMed  Google Scholar 

  109. Qi, Y., Ma, Y., Peng, Z., Wang, L., Li, L., Tang, Y., et al. (2020). Long noncoding RNA PENG upregulates PDZK1 expression by sponging miR-15b to suppress clear cell renal cell carcinoma cell proliferation. Oncogene, 39(22), 4404–4420.

    CAS  PubMed  Google Scholar 

  110. Dong, D., Mu, Z., Wei, N., Sun, M., Wang, W., Xin, N., et al. (2019). Long non-coding RNA ZFAS1 promotes proliferation and metastasis of clear cell renal cell carcinoma via targeting miR-10a/SKA1 pathway. Biomedicine & Pharmacotherapy, 111, 917–925.

    CAS  Google Scholar 

  111. Sun, X.-H., Fan, W.-J., An, Z.-J., & Sun, Y. (2020). Inhibition of long noncoding RNA CRNDE increases chemosensitivity of medulloblastoma cells by targeting miR-29c-3p. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 28(1), 95–102.

    Google Scholar 

  112. Zheng, D., Zhang, Y., Hu, Y., Guan, J., Xu, L., Xiao, W., et al. (2019). Long noncoding RNA Crnde attenuates cardiac fibrosis via Smad3-Crnde negative feedback in diabetic cardiomyopathy. The FEBS Journal, 286(9), 1645–1655.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Wang, P., Chen, D., Ma, H., & Li, Y. (2017). LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis. OncoTargets and Therapy, 10, 5137.

    PubMed Central  PubMed  Google Scholar 

  114. Murugavel Ponnusamy, F. L., Zhang, Y.-H., Li, R.-B., Zhai, M., Liu, F., Zhou, L.-Y., Liu, C.-Y. et al. (2019). The long non-coding RNA CPR regulates cardiomyocyte proliferation and cardiac repair.

  115. Liu, E., Liu, Z., & Zhou, Y. (2015). Carboplatin-docetaxel-induced activity against ovarian cancer is dependent on up-regulated lncRNA PVT1. International Journal of Clinical and Experimental Pathology, 8(4), 3803.

    PubMed Central  PubMed  Google Scholar 

  116. Xu, J.-J., Zheng, W.-H., Wang, J., & Chen, Y.-Y. (2020). Long non-coding RNA plasmacytoma variant translocation 1 linked to hypoxia-induced cardiomyocyte injury of H9c2 cells by targeting miR-135a-5p/forkhead box O1 axis. Chinese Medical Journal, 133(24), 2953.

    PubMed Central  PubMed  Google Scholar 

  117. Liu, L., Pang, X., Shang, W., Xie, H., Feng, Y., & Feng, G. (2019). Long non-coding RNA GAS5 sensitizes renal cell carcinoma to sorafenib via miR-21/SOX5 pathway. Cell Cycle, 18(3), 257–263.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Zhou, X.-H., Chai, H.-X., Bai, M., & Zhang, Z. (2020). LncRNA-GAS5 regulates PDCD4 expression and mediates myocardial infarction-induced cardiomyocytes apoptosis via targeting MiR-21. Cell Cycle, 19(11), 1363–1377.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Wang, X., Jiang, G., Ren, W., Wang, B., Yang, C., & Li, M. (2020). LncRNA NEAT1 regulates 5-Fu sensitivity, apoptosis and invasion in colorectal cancer through the MiR-150-5p/CPSF4 axis. OncoTargets and Therapy, 13, 6373.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Chen, H., Xia, W., & Hou, M. (2020). LncRNA-NEAT1 from the competing endogenous RNA network promotes cardioprotective efficacy of mesenchymal stem cell-derived exosomes induced by macrophage migration inhibitory factor via the miR-142-3p/FOXO1 signaling pathway. Stem Cell Research & Therapy, 11(1), 31.

    CAS  Google Scholar 

  121. Chen, T., Liu, Z., Zeng, W., & Huang, T. (2019). Down-regulation of long non-coding RNA HOTAIR sensitizes breast cancer to trastuzumab. Scientific Reports, 9(1), 1–12.

    Google Scholar 

  122. Chen, J., Li, X., Zhao, F., & Hu, Y. (2021). HOTAIR/miR-17-5p axis is involved in the propofol-mediated cardioprotection against ischemia/reperfusion injury. Clinical Interventions in Aging, 16, 621.

    PubMed Central  PubMed  Google Scholar 

  123. Sigaroudi, A. E., Salari, A., Poursadeghi, M., Moaddab, F., Mirrazeghi, S. F., & Mirbolouk, F. (2019). Safety and efficacy of high-dose versus low-dose aspirin in individuals with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention: A randomized clinical trial. Immunopathologia Persa, 6(1), e05.

    Google Scholar 

  124. Zhang, J., Gao, C., Meng, M., & Tang, H. (2016). Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis. Biomolecules & Therapeutics, 24(1), 19.

    CAS  Google Scholar 

  125. Su, X., Lv, L., Li, Y., Fang, R., Yang, R., Li, C., et al. (2020). lncRNA MIRF promotes cardiac apoptosis through the miR-26a-Bak1 axis. Molecular Therapy-Nucleic Acids, 20, 841–850.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Wang, S., He, F., Li, Z., Hu, Y., Huangfu, N., & Xie, D. (2020). Long non-coding RNA BANCR promotes interferon-β-induced cardiomyocyte apoptosis by targeting signal transducer and activator of transcription 1 in vitro. International Journal of Clinical and Experimental Pathology, 13(11), 2840.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Miao, X., Liu, Y., Fan, Y., Wang, G., & Zhu, H. (2021). LncRNA BANCR attenuates the killing capacity of cisplatin on gastric cancer cell through the ERK1/2 pathway. Cancer Management and Research, 13, 287.

    PubMed Central  PubMed  Google Scholar 

  128. Jiang, L., Zhao, X.-H., Mao, Y.-L., Wang, J.-F., Zheng, H.-J., & You, Q.-S. (2019). Long non-coding RNA RP11–468E2. 5 curtails colorectal cancer cell proliferation and stimulates apoptosis via the JAK/STAT signaling pathway by targeting STAT5 and STAT6. Journal of Experimental & Clinical Cancer Research, 38(1), 1–16.

    Google Scholar 

  129. Zhang, X., Sha, M., Yao, Y., Da, J., & Jing, D. (2015). Increased B-type-natriuretic peptide promotes myocardial cell apoptosis via the B-type-natriuretic peptide/long non-coding RNA LSINCT5/caspase-1/interleukin 1β signaling pathway. Molecular Medicine Reports, 12(5), 6761–6767.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Liu, H., Zhou, G., Fu, X., Cui, H., Pu, G., Xiao, Y., et al. (2017). Long noncoding RNA TUG1 is a diagnostic factor in lung adenocarcinoma and suppresses apoptosis via epigenetic silencing of BAX. Oncotarget, 8(60), 101899.

    PubMed Central  PubMed  Google Scholar 

  131. Deng, H., Ouyang, W., Zhang, L., Xiao, X., Huang, Z., & Zhu, W. (2019). LncRNA GASL1 is downregulated in chronic heart failure and regulates cardiomyocyte apoptosis. Cellular & Molecular Biology Letters, 24(1), 1–7.

    CAS  Google Scholar 

  132. Zadeh, F. J., Akbari, T., Samimi, A., Davari, N., & Rezaeeyan, H. (2020). The role of molecular mechanism of Ten-Eleven Translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs). Molecular Biology Reports, 47, 5503.

    CAS  PubMed  Google Scholar 

  133. Lv, J., Zhu, Y., & Yao, S. (2020). LncRNAMORT is upregulated in myocardial infarction and promotes the apoptosis of cardiomyocyte by downregulating miR-93. BMC Cardiovascular Disorders, 20, 1–7.

    Google Scholar 

  134. Haybar, H., Shahrabi, S., Rezaeeyan, H., Shirzad, R., & Saki, N. (2019). Protective role of heat shock transcription factor 1 in heart failure: A diagnostic approach. Journal of Cellular Physiology, 234(6), 7764–7770.

    CAS  PubMed  Google Scholar 

  135. Sun, H., Ke, C., Zhang, L., Tian, C., Zhang, Z., & Wu, S. (2020). Long non-coding RNA (LncRNA)-ATB promotes inflammation, cell apoptosis and senescence in transforming growth factor-β1 (TGF-β1) induced human kidney 2 (HK-2) cells via TGFβ/SMAD2/3 signaling pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 26, e922029–e922031.

    CAS  Google Scholar 

  136. Zhang, X. H., Li, B. F., Ding, J., Shi, L., Ren, H. M., Liu, K., et al. (2020). LncRNA DANCR-miR-758-3p-PAX6 molecular network regulates apoptosis and autophagy of breast cancer cells. Cancer Management and Research, 12, 4073.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Ma, Y., Fan, B., Ren, Z., Liu, B., & Wang, Y. (2019). Long noncoding RNA DANCR contributes to docetaxel resistance in prostate cancer through targeting the miR-34a-5p/JAG1 pathway. OncoTargets and Therapy, 12, 5485.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Liu, Y., Chen, L., Yuan, H., Guo, S., & Wu, G. (2020). LncRNA DANCR promotes sorafenib resistance via activation of IL-6/STAT3 signaling in hepatocellular carcinoma cells. OncoTargets and Therapy, 13, 1145.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Zhang, H., Liu, L., Chen, L., Liu, H., Ren, S., & Tao, Y. (2021). Long noncoding RNA DANCR confers cytarabine resistance in acute myeloid leukemia by activating autophagy via the miR-874-3P/ATG16L1 axis. Molecular Oncology, 15(4), 1203–1216.

    PubMed Central  PubMed  Google Scholar 

  140. Chen, P., Fang, X., Xia, B., Zhao, Y., Li, Q., & Wu, X. (2018). Long noncoding RNA LINC00152 promotes cell proliferation through competitively binding endogenous miR-125b with MCL-1 by regulating mitochondrial apoptosis pathways in ovarian cancer. Cancer Medicine, 7(9), 4530–4541.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Xia, P., Gu, R., Zhang, W., & Sun, Y.-F. (2020). lncRNA CEBPA-AS1 overexpression inhibits proliferation and migration and stimulates apoptosis of OS cells via notch signaling. Molecular Therapy-Nucleic Acids, 19, 1470–1481.

    CAS  PubMed  Google Scholar 

  142. Zheng, J., Peng, B., Zhang, Y., Ai, F., & Hu, X. (2020). FOXD3-AS1 knockdown suppresses hypoxia-induced cardiomyocyte injury by increasing cell survival and inhibiting apoptosis via upregulating cardioprotective molecule miR-150-5p In Vitro. Frontiers in Pharmacology, 11, 1284.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Zhang, D., Lee, H., Haspel, J. A., & Jin, Y. (2017). Long noncoding RNA FOXD3-AS1 regulates oxidative stress-induced apoptosis via sponging microRNA-150. The FASEB Journal, 31(10), 4472–4481.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Zeng, Z., Zhao, G., Zhu, H., Nie, L., He, L., Liu, J., et al. (2020). LncRNA FOXD3-AS1 promoted chemo-resistance of NSCLC cells via directly acting on miR-127-3p/MDM2 axis. Cancer Cell International, 20(1), 1–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Guo, W., Jiang, H., Li, H., Li, F., Yu, Q., Liu, Y., et al. (2019). LncRNA-SRA1 suppresses osteosarcoma cell proliferation while promoting cell apoptosis. Technology in Cancer Research & Treatment, 18, 1533033819841438.

    CAS  Google Scholar 

  146. Wu, Y., Ding, J., Sun, Q., Zhou, K., Zhang, W., Du, Q., et al. (2018). Long noncoding RNA hypoxia-inducible factor 1 alpha-antisense RNA 1 promotes tumor necrosis factor-α-induced apoptosis through caspase 3 in Kupffer cells. Medicine, 97(4), e9483.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Misawa, A., Takayama, K.-I., Urano, T., & Inoue, S. (2016). Androgen-induced long noncoding RNA (lncRNA) SOCS2-AS1 promotes cell growth and inhibits apoptosis in prostate cancer cells. Journal of Biological Chemistry, 291(34), 17861–17880.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tao, W., Li, Y., Zhu, M., Li, C., & Li, P. (2019). LncRNA NORAD promotes proliferation and inhibits apoptosis of gastric cancer by regulating miR-214/Akt/mTOR axis. OncoTargets and Therapy, 12, 8841.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Wu, H., Zhu, H., Zhuang, Y., Zhang, J., Ding, X., Zhan, L., et al. (2020). LncRNA ACART protects cardiomyocytes from apoptosis by activating PPAR-γ/Bcl-2 pathway. Journal of Cellular and Molecular Medicine, 24(1), 737–746.

    CAS  PubMed  Google Scholar 

  150. Teng, W., Qiu, C., He, Z., Wang, G., Xue, Y., & Hui, X. (2017). Linc00152 suppresses apoptosis and promotes migration by sponging miR-4767 in vascular endothelial cells. Oncotarget, 8(49), 85014.

    PubMed Central  PubMed  Google Scholar 

  151. Li, G., Yu, J., Yang, B., Gong, F., & Zhang, K. (2019). LncRNA LOXL1-AS1 inhibited cell proliferation, migration and invasion as well as induced apoptosis in breast cancer via regulating miR-143-3p. European Review for Medical and Pharmacological Sciences, 23(23), 10400–10409.

    PubMed  Google Scholar 

  152. Ma, Z., Luo, Y., & Qiu, M. (2017). miR-143 induces the apoptosis of prostate cancer LNCap cells by suppressing Bcl-2 expression. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 23, 359.

    CAS  Google Scholar 

  153. Dai, W., Mu, L., Cui, Y., Li, Y., Chen, P., Xie, H., et al. (2019). Berberine promotes apoptosis of colorectal cancer via regulation of the long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2)/AU-binding factor 1 (AUF1)/B-cell CLL/lymphoma 2 (Bcl-2) axis. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 730.

    CAS  Google Scholar 

  154. Zhu, D., Yu, Y., Qi, Y., Wu, K., Liu, D., Yang, Y., et al. (2019). Long non-coding RNA CASC2 enhances the antitumor activity of cisplatin through suppressing the Akt pathway by inhibition of miR-181a in esophageal squamous cell carcinoma cells. Frontiers in Oncology, 9, 350.

    PubMed Central  PubMed  Google Scholar 

  155. Chen, J., Liu, L., Wei, G., Wu, W., Luo, H., Yuan, J., et al. (2016). The long noncoding RNA ASNR regulates degradation of Bcl-2 mRNA through its interaction with AUF1. Scientific Reports, 6(1), 1–11.

    Google Scholar 

  156. Han, L., Zhang, E., Yin, D., Kong, R., Xu, T., Chen, W., et al. (2015). Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell Death & Disease, 6(2), e1665.

    CAS  Google Scholar 

  157. Wang, H., Fang, L., Jiang, J., Kuang, Y., Wang, B., Shang, X., et al. (2018). The cisplatin-induced lncRNA PANDAR dictates the chemoresistance of ovarian cancer via regulating SFRS2-mediated p53 phosphorylation. Cell Death & Disease, 9(11), 1–15.

    Google Scholar 

  158. Cai, X., Zhang, P., Wang, S., Hong, L., Yu, S., Li, B., et al. (2020). lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR-195. Molecular Medicine Reports, 22(6), 4579–4588.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Zhu, F., Niu, R., Shao, X., & Shao, X. (2021). FGD5-AS1 promotes cisplatin resistance of human lung adenocarcinoma cell via the miR-142-5p/PD-L1 axis. International Journal of Molecular Medicine, 47(2), 523–532.

    CAS  PubMed  Google Scholar 

  160. Zhang, Z., Lv, M., Wang, X., Zhao, Z., Jiang, D., & Wang, L. (2020). LncRNA LUADT1 sponges miR-195 to prevent cardiac endothelial cell apoptosis in sepsis. Molecular Medicine, 26(1), 1–8.

    Google Scholar 

  161. Yan, M., Liu, Q., Jiang, Y., Wang, B., Ji, Y., Liu, H., et al. (2020). Long noncoding RNA LNC_000898 alleviates cardiomyocyte apoptosis and promotes cardiac repair after myocardial infarction through modulating the miR-375/PDK1 axis. Journal of Cardiovascular Pharmacology, 76(1), 77–85.

    CAS  PubMed  Google Scholar 

  162. Xu, W., Zhao, Y., & Ai, Y. (2020). Overexpression of lncRNA Gm43050 alleviates apoptosis and inflammation response induced by sevoflurane treatment by regulating miR-640/ZFP91. American Journal of Translational Research, 12(8), 4337.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Zhao, Y., & Ai, Y. (2020). Overexpression of lncRNA Gm15621 alleviates apoptosis and inflammation response resulting from sevoflurane treatment through inhibiting miR-133a/Sox4. Journal of Cellular Physiology, 235(2), 957–965.

    CAS  PubMed  Google Scholar 

  164. Chen, F., Hu, Y., Xie, Y., Zhao, Z., Ma, L., Li, Z., et al. (2020). Total glucosides of paeony alleviate cell apoptosis and inflammation by targeting the long noncoding RNA XIST/MicroRNA-124–3p/ITGB1 axis in renal ischemia/reperfusion injury. Mediators of Inflammation, 2020, 1–13.

    CAS  Google Scholar 

  165. Zhao, H., Wan, J., & Zhu, Y. (2020). Carboplatin inhibits the progression of retinoblastoma through IncRNA XIST/miR-200a-3p/NRP1 Axis. Drug Design, Development and Therapy, 14, 3417.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Shen, S. N., Li, K., Liu, Y., Yang, C. L., He, C. Y., & Wang, H. R. (2019). Down-regulation of long noncoding RNA PVT 1 inhibits esophageal carcinoma cell migration and invasion and promotes cell apoptosis via micro RNA-145-mediated inhibition of FSCN 1. Molecular Oncology, 13(12), 2554–2573.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Ping, G., Xiong, W., Zhang, L., Li, Y., Zhang, Y., & Zhao, Y. (2018). Silencing long noncoding RNA PVT1 inhibits tumorigenesis and cisplatin resistance of colorectal cancer. American Journal of Translational Research, 10(1), 138.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Dai, J.-H., Huang, W.-Z., Li, C., Deng, J., Lin, S.-J., & Luo, J. (2019). Silencing of long noncoding RNA SBF2-AS1 inhibits proliferation, migration and invasion and contributes to apoptosis in osteosarcoma cells by upregulating microRNA-30a to suppress FOXA1 expression. Cell Cycle, 18(20), 2727–2741.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Zhang, Z., Yin, J., Lu, C., Wei, Y., Zeng, A., & You, Y. (2019). Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. Journal of Experimental & Clinical Cancer Research, 38(1), 1–16.

    Google Scholar 

  170. Katare, P. B., Nizami, H. L., Paramesha, B., Dinda, A. K., & Banerjee, S. K. (2020). Activation of toll like receptor 4 (TLR4) promotes cardiomyocyte apoptosis through SIRT2 dependent p53 deacetylation. Scientific Reports, 10(1), 1–15.

    Google Scholar 

  171. Xu, W., Hu, G.-Q., Da Costa, C., Tang, J.-H., Li, Q.-R., Du, L., et al. (2019). Long noncoding RNA UBE2R2-AS1 promotes glioma cell apoptosis via targeting the miR-877-3p/TLR4 axis. OncoTargets and Therapy, 12, 3467.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Li, K., Zhong, S., Luo, Y., Zou, D., Li, M., Li, Y., et al. (2019). A long noncoding RNA binding to QKI-5 regulates germ cell apoptosis via p38 MAPK signaling pathway. Cell Death & Disease, 10(10), 1–14.

    Google Scholar 

  173. Zeng, J., Li, Y., Wang, Y., Xie, G., Feng, Q., Yang, Y., et al. (2020). lncRNA 00312 attenuates cell proliferation and invasion and promotes apoptosis in renal cell carcinoma via miR-34a-5p/ASS1 axis. Oxidative Medicine and Cellular Longevity, 2020, 1–16.

    Google Scholar 

  174. Su, C., Shi, K., Cheng, X., Han, Y., Li, Y., Yu, D., et al. (2018). Long noncoding RNA LINC00472 inhibits proliferation and promotes apoptosis of lung adenocarcinoma cells via regulating miR-24-3p/DEDD. Technology in Cancer Research & Treatment, 17, 1533033818790490.

    CAS  Google Scholar 

  175. Yan, S., Tang, Z., Chen, K., Liu, Y., Yu, G., Chen, Q., et al. (2018). Long noncoding RNA MIR31HG inhibits hepatocellular carcinoma proliferation and metastasis by sponging microRNA-575 to modulate ST7L expression. Journal of Experimental & Clinical Cancer Research, 37(1), 214.

    Google Scholar 

  176. Wu, C., Chen, W., Yu, F., Yuan, Y., Chen, Y., Hurst, D. R., et al. (2020). Long noncoding RNA HITTERS protects oral squamous cell carcinoma cells from endoplasmic reticulum stress-induced apoptosis via promoting MRE11-RAD50-NBS1 complex formation. Advanced Science, 7(22), 2002747.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Peng, X., Ji, C., Tan, L., Lin, S., Zhu, Y., Long, M., et al. (2020). Long non-coding RNA TNRC6C-AS1 promotes methylation of STK4 to inhibit thyroid carcinoma cell apoptosis and autophagy via Hippo signalling pathway. Journal of Cellular and Molecular Medicine, 24(1), 304–316.

    CAS  PubMed  Google Scholar 

  178. Huang, W., Su, G., Huang, X., Zou, A., Wu, J., Yang, Y., et al. (2019). Long noncoding RNA PCAT6 inhibits colon cancer cell apoptosis by regulating anti-apoptotic protein ARC expression via EZH2. Cell Cycle, 18(1), 69–83.

    CAS  PubMed  Google Scholar 

  179. Wu, H., Zou, Q., He, H., Liang, Y., Lei, M., Zhou, Q., et al. (2019). Long non-coding RNA PCAT6 targets miR-204 to modulate the chemoresistance of colorectal cancer cells to 5-fluorouracil-based treatment through HMGA2 signaling. Cancer Medicine, 8(5), 2484–2495.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Xin, H., Liu, N., Xu, X., Zhang, J., Li, Y., Ma, Y., et al. (2019). Knockdown of lncRNA-UCA1 inhibits cell viability and migration of human glioma cells by miR-193a-mediated downregulation of CDK6. Journal of Cellular Biochemistry, 120(9), 15157–15169.

    CAS  PubMed  Google Scholar 

  181. Yang, Y.-N., Zhang, R., Du, J.-W., Yuan, H.-H., Li, Y.-J., Wei, X.-L., et al. (2018). Predictive role of UCA1-containing exosomes in cetuximab-resistant colorectal cancer. Cancer Cell International, 18(1), 1–11.

    CAS  Google Scholar 

  182. Fu, D., Lu, C., Qu, X., Li, P., Chen, K., Shan, L., et al. (2019). LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. Aging (Albany NY), 11(19), 8374.

    CAS  Google Scholar 

  183. Zhuang, L., Xia, W., Chen, D., Ye, Y., Hu, T., Li, S., et al. (2020). Exosomal LncRNA–NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p. Journal of Nanobiotechnology, 18(1), 1–16.

    Google Scholar 

  184. Wang, H., Lin, X., Li, J., Zeng, G., & Xu, T. (2021). Long noncoding RNA SOX2-OT aggravates doxorubicin-induced apoptosis of cardiomyocyte by targeting miR-942-5p/DP5. Drug Design, Development and Therapy, 15, 481.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all our colleagues in Shiraz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

MS has conceived the manuscript and revised it. MA and MM wrote the manuscript. MKA and AA design the tables.

Corresponding author

Correspondence to Mozhdeh Sanei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Additional information

Handling Editor: Mitzi C. Glover.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amrovani, M., Mohammadtaghizadeh, M., Aghaali, M.K. et al. Long Non-coding RNAs: Potential Players in Cardiotoxicity Induced by Chemotherapy Drugs. Cardiovasc Toxicol 22, 191–206 (2022). https://doi.org/10.1007/s12012-021-09681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09681-y

Keywords

Navigation