Skip to main content
Log in

Effect of Laser Parameters on the Characteristics of a Laser Clad AISI 431 Stainless Steel Coating on Carbon Steel Substrate

  • Additive Manufacturing: Functionally Graded Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

AISI 431 bead-on-plates were deposited on AISI 1010 by laser cladding, since it is a well-known corrosion-resistant material. The effects of laser power, scanning speed, powder feed rate and focal distance on the coatings’ geometry and dilution ratios, as well as microstructure evolution, iron dilution and microhardness of the beads were evaluated by optical and electron scanning microscopes, the last one coupled with x-ray energy dispersive spectroscopy, and microhardness test. The results showed that the clad height is mainly influenced by the scanning speed, while for the width, laser power, scanning speed and focal distance were crucial. Changing laser power has a more marked effect on the dilution than on the aspect ratio, while changing scanning speeds and focal distance shows a marked effect on both dilution and aspect ratio. The microstructure of coating zone is mainly composed by lath martensite. Furthermore, the average hardness by microindentation of the AISI 431 stainless steel cladding coating was about 5 times higher than that of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Bell, Surf. Eng. 6, 31. (1990).

    Article  Google Scholar 

  2. L. Sexton, S. Lavin, G. Byrne, and A. Kennedy, J. Mater. Process. Technol. 122, 63. (2002).

    Article  Google Scholar 

  3. C. Sudha, P. Shankar, R.V. Subba Rao, R. Thirumurugesan, M. Vijayalakshmi, and B. Raj, Surf. Coat. Technol. 202, 2103. (2008).

    Article  Google Scholar 

  4. A.S. Khanna, S. Kumari, S. Kanungo, and A. Gasser, Int J Refract Hard Met. 27, 485. (2009).

    Article  Google Scholar 

  5. G. Madhusudhan Reddy, and A. Rajasekhar, Adv. Mat. Res. 794, 289. (2013).

    Google Scholar 

  6. I. Hemmati, V. Ocelik, J. Th, and M. De Hosson, J. Mater. Sci. 46, 3405. (2011).

    Article  Google Scholar 

  7. I. Hemmati, V. Ocelik, J. Th, and M. De Hosson, Surf. Coat. Technol. 205, 5235. (2011).

    Article  Google Scholar 

  8. J. Liu, J. Li, H. Xu Cheng, and Wang, , Surf. Coat. Technol. 325, 352. (2017).

    Article  Google Scholar 

  9. B. Song, T. Hussain, and K. Voisey, Phys. Procedia 83, 706. (2016).

    Article  Google Scholar 

  10. E.W.A. Figueredo, L.H.R. Apolinario, M.V. Santos, A.C.S. Silva, J.A. Avila, M.S.F. Lima, and T.F.A. Santos, J. Mater. Eng. Perfom. 30, 3298. (2021).

    Article  Google Scholar 

  11. S. Zanzarin, Laser cladding with metallic powders, Doctoral dissertation, University of Trento, Trento, 2015.

  12. P. Murkute, S. Pasebani, and O. BurkanIsgor, J. Mater. Process. Technol. 273, 116243. (2019).

    Article  Google Scholar 

  13. I. Manna, J. Dutta Majumdar, B. Ramesh Chandra, S. Nayak, and N.B. Dahotre, Surf. Coat. Technol. 201, 434. (2006).

    Article  Google Scholar 

  14. D. Tanigawa, N. Abe, M. Tsukamoto, Y. Hayashi, H. Yumazaki, Y. Tatsumi, and M. Yoneyama, Opt. Lasers Eng. 101, 23. (2018).

    Article  Google Scholar 

  15. L. Reddy, S.P. Preston, P.H. Shipway, C. Davis, and T. Hussain, Surf. Coat. Technol. 349, 198. (2018).

    Article  Google Scholar 

  16. G.R. Desale, C.P. Paul, B.K. Gandhi, and S.C. Jain, Wear 266, 975. (2009).

    Article  Google Scholar 

  17. L.H.R. Apolinario, D. Wallerstein, M.A. Montealegre, S.L. Urtiga Filho, E.A. Torres, T.F.C. Hermenegildo, and T.F.A. Santos, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50, 3617. (2019).

    Article  Google Scholar 

  18. U. de Oliveira, V. Ocelik, J. Th, and M. De Hosson, Surf. Coat. Technol. 197, 127. (2005).

    Article  Google Scholar 

  19. J.T.M. de Hosson, V. Ocelik, U. de Oliveira, and D.I. Vainchtein, Int. J. Mat. Res. 100, 1343. (2009).

    Article  Google Scholar 

  20. B. Graf, S. Ammer, A. Gumenyuk, and M. Rethmeier, Procedia CIRP. 11, 245. (2013).

    Article  Google Scholar 

  21. B. Bax, R. Rajput, R. Keller, and M. Reisacher, Addit Manuf. 21, 487. (2018).

    Google Scholar 

  22. A. Fathi, E. Toyserkani, A. Khajepour, and M. Durali, J. Phys. D Appl. Phys. 39, 2613. (2006).

    Article  Google Scholar 

  23. P. Alvarez, M. Ángeles Montealegre, J.F. Pulido-Jiménez, and J.I. Arrizubieta, J. Manuf. Mater. Process. 2, 55. (2018).

    Google Scholar 

  24. F. Bourahima, A.L. Helbert, M. Rege, V. Ji, D. Solas, and T. Baudin, J. Alloys Compd. 771, 1018. (2019).

    Article  Google Scholar 

  25. A. Riquelme, P. Rodrigo, M.D. Escalera, and J. Rams, Opt. Lasers Eng. 78, 165. (2016).

    Article  Google Scholar 

  26. G. Telasang, J. Dutta Majumdar, G. Padmanabham, M. Tak, and I. Manna, Surf. Coat. Technol. 258, 1108. (2014).

    Article  Google Scholar 

  27. F. Shu, B. Zhang, T. Liu, S. Sui, Y. Liu, P. He, B. Liu, and B. Xu, Surf. Coat. Technol. 358, 667. (2019).

    Article  Google Scholar 

  28. M. Reis, S. Estanislao, A. Cabral, P. Peças, and H. Gouveia, Rev. Metal Madrid. 34, 154. (1998).

    Article  Google Scholar 

  29. T. Gabriel, D. Rommel, F. Scherm, M. Gorywoda, and U. Glatezel, Materials. 10, 279. (2017).

    Article  Google Scholar 

  30. M. Moradi, H. Arabi, S.J. Nasab, and K.Y. Benyounis, Opt. Laser Technol. 111, 347. (2019).

    Article  Google Scholar 

  31. Heat treater’s guide: practices and procedures for irons and steels, 2nd edn. ASM International, 1995.

  32. J. Yao, J. Zhang, G. Wu, L. Wang, Q. Zhang, and R. Liu, Opt. Laser Technol. 101, 520. (2018).

    Article  Google Scholar 

  33. V. Ocelik, I. Hemmati, J. Th, and M. De Hosson, Surface Effects Contact Mech. Include. Tribol. XII. 91, 93. (2015).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Universidade Federal de Pernambuco (UFPE) laboratory (COMPOLAB), Brazilian Institute for Materials Joining and Coating Technologies (INTM), CNPQ, CAPES, and FACEPE for financial support and providing all the conditions required to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália L. Do Vale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do Vale, N.L., Fernandes, C.A., Santos, R.d.A. et al. Effect of Laser Parameters on the Characteristics of a Laser Clad AISI 431 Stainless Steel Coating on Carbon Steel Substrate. JOM 73, 2868–2877 (2021). https://doi.org/10.1007/s11837-021-04835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04835-3

Navigation