Skip to main content

Advertisement

Log in

Novel luminescent benzopyranothiophene- and BODIPY-derived aroylhydrazonic ligands and their dicopper(II) complexes: syntheses, antiproliferative activity and cellular uptake studies

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two novel unsymmetrical binucleating aroylhydrazonic ligands and four dicopper(II) complexes carrying fluorescent benzopyranothiophene (BPT) or boron dipyrromethene (BODIPY) entities were synthesized and fully characterized. Complex 1, derived from the BPT-containing ligand H3L1, had its crystal structure elucidated through X-ray diffraction measurements. The absorption and fluorescence profiles of all the compounds obtained were discussed. Additionally, the stability of the ligands and complexes was monitored by UV–vis spectroscopy in DMSO and biologically relevant media. All the compounds showed moderate to high cytotoxicity towards the triple negative human breast cancer cell line MDA-MB-231. BPT derivatives were the most cytotoxic, specially H3L1, reaching an IC50 value up to the nanomolar range. Finally, fluorescence microscopy imaging studies employing mitochondria- and nucleus-staining dyes showed that the BODIPY-carrying ligand H3L2 was highly cell permeant and suggested that the compound preferentially accumulates in the mitochondria.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877-883. https://doi.org/10.1016/j.cub.2011.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Copper active sites in biology. Chem Rev 114:3659–3853. https://doi.org/10.1021/cr400327t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Erxleben A (2018) Interactions of copper complexes with nucleic acids. Coord Chem Rev 360:92–121. https://doi.org/10.1016/j.ccr.2018.01.008

    Article  CAS  Google Scholar 

  4. McGivern TJP, Afsharpour S, Marmion CJ (2018) Copper complexes as artificial DNA metallonucleases: from Sigman’s reagent to next generation anti-cancer agent? Inorg Chim Acta 472:12–39. https://doi.org/10.1016/j.ica.2017.08.043

    Article  CAS  Google Scholar 

  5. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Advances in copper complexes as anticancer agents. Chem Rev 114:815–862. https://doi.org/10.1021/cr400135x

    Article  CAS  PubMed  Google Scholar 

  6. Ainscough EW, Brodie AM, Denny WA, Finlay GJ, Gothe SA, Ranford JD (1999) Cytotoxicity of salicylaldehyde benzoylhydrazone analogs and their transition metal complexes: quantitative structure-activity relationships. J Inorg Biochem 77:125–133. https://doi.org/10.1016/s0162-0134(99)00131-2

    Article  CAS  PubMed  Google Scholar 

  7. Lee WY, Lee PP, Yan YK, Lau M (2010) Cytotoxic copper(II) salicylaldehyde semicarbazone complexes: mode of action and proteomic analysis. Metallomics 2:694–705. https://doi.org/10.1039/c0mt00016g

    Article  CAS  PubMed  Google Scholar 

  8. Raja DS, Bhuvanesh NSP, Natarajan K (2012) DNA binding, protein interaction, radical scavenging and cytotoxic activity of 2-oxo-1,2-dihydroquinoline-3-carbaldehyde(2′-hydroxybenzoyl)hydrazone and its Cu(II) complexes: a structure activity relationship study. Inorg Chim Acta 385:81–93. https://doi.org/10.1016/j.ica.2011.12.038

    Article  CAS  Google Scholar 

  9. Cindrić M, Bjelopetrović A, Pavlović G, Damjanović V, Lovrić J, Matković-Čalogović D, Vrdoljak V (2017) Copper(II) complexes with benzhydrazone-related ligands: synthesis, structural studies and cytotoxicity assay. New J Chem 41:2425–2435. https://doi.org/10.1039/C6NJ03827A

    Article  CAS  Google Scholar 

  10. Ramachandran E, Gandin V, Bertani R, Sgarbossa P, Natarajan K, Bhuvanesh NSP, Venzo A, Zoleo A, Glisenti A, Dolmella A, Albinati A, Marzano C (2018) Synthesis, characterization and cytotoxic activity of novel copper(II) complexes with aroylhydrazone derivatives of 2-Oxo-1,2-dihydrobenzo[h]quinoline-3-carbaldehyde. J Inorg Biochem 182:18–28. https://doi.org/10.1016/j.jinorgbio.2018.01.016

    Article  CAS  PubMed  Google Scholar 

  11. Burgos-Lopez Y, Del Plá J, Balsa LM, León IE, Echeverría GA, Piro OE, García-Tojal J, Pis-Diez R, González-Baró AC, Parajón-Costa BS (2019) Synthesis, crystal structure and cytotoxicity assays of a copper(II) nitrate complex with a tridentate ONO acylhydrazone ligand. Spectroscopic and theoretical studies of the complex and its ligand. Inorg Chim Acta 487:31–40. https://doi.org/10.1016/j.ica.2018.11.039

    Article  CAS  Google Scholar 

  12. Ji Y, Dai F, Zhou B (2018) Designing salicylaldehyde isonicotinoyl hydrazones as Cu(II) ionophores with tunable chelation and release of copper for hitting redox Achilles heel of cancer cells. Free Radic Biol Med 129:215–226. https://doi.org/10.1016/j.freeradbiomed.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  13. Rey NA, Neves A, Bortoluzzi AJ, Haase W, Tomkowicz Z (2012) Doubly phenoxo–hydroxo-bridged dicopper(II) complexes: individual contributions of the bridges to antiferromagnetic coupling based on two related biomimetic models for catechol oxidases. Dalton Trans 41:7196–7200. https://doi.org/10.1039/C2DT30419H

    Article  CAS  PubMed  Google Scholar 

  14. Rey NA, Neves A, Bortoluzzi AJ, Pich CT, Terenzi H (2007) Catalytic promiscuity in biomimetic systems: catecholase-like activity, phosphatase-like activity, and hydrolytic DNA cleavage promoted by a new dicopper(II) hydroxo-bridged complex. Inorg Chem 46:348–350. https://doi.org/10.1021/ic0613107

    Article  CAS  PubMed  Google Scholar 

  15. Rada JP, Bastos BSM, Anselmino L, Franco CHJ, Lanznaster M, Diniz R, Fernández CO, Menacho-Márquez M, Percebom AM, Rey NA (2019) Binucleating hydrazonic ligands and their μ-hydroxodicopper(II) complexes as promising structural motifs for enhanced antitumor activity. Inorg Chem 58:8800–8819. https://doi.org/10.1021/acs.inorgchem.9b01195

    Article  CAS  PubMed  Google Scholar 

  16. Rada JP, Forté J, Gontard G, Corcé V, Salmain M, Rey NA (2020) Isoxazole-derived aroylhydrazones and their dinuclear copper(II) complexes show antiproliferative activity on breast cancer cells with a potentially alternative mechanism of action. ChemBioChem 21:2474–2486. https://doi.org/10.1002/cbic.202000122

    Article  CAS  PubMed  Google Scholar 

  17. Bertrand B, Passador K, Goze C, Denat F, Bodio E, Salmain M (2018) Metal-based BODIPY derivatives as multimodal tools for life sciences. Coord Chem Rev 358:108–124. https://doi.org/10.1016/j.ccr.2017.12.007

    Article  CAS  Google Scholar 

  18. Bhattacharyya A, Jameei A, Garai A, Saha R, Karande AA, Chakravarty AR (2018) Mitochondria-localizing BODIPY–copper(II) conjugates for cellular imaging and photo-activated cytotoxicity forming singlet oxygen. Dalton Trans 47:5019–5030. https://doi.org/10.1039/C8DT00255J

    Article  CAS  PubMed  Google Scholar 

  19. Bhattacharyya A, Dixit A, Mitra K, Banerjee S, Karande AA, Chakravarty AR (2015) BODIPY appended copper(ii) complexes of curcumin showing mitochondria targeted remarkable photocytotoxicity in visible light. MedChemComm 6:846–851. https://doi.org/10.1039/C4MD00425F

    Article  CAS  Google Scholar 

  20. Bhattacharyya A, Dixit A, Banerjee S, Roy B, Kumar A, Karande AA, Chakravarty AR (2016) BODIPY appended copper(ii) complexes for cellular imaging and singlet oxygen mediated anticancer activity in visible light. RSC Adv 6:104474–104482. https://doi.org/10.1039/C6RA23118G

    Article  CAS  Google Scholar 

  21. Mukherjee N, Podder S, Mitra K, Majumdar S, Nandi D, Chakravarty AR (2018) Targeted photodynamic therapy in visible light using BODIPY-appended copper(II) complexes of a vitamin B6 Schiff base. Dalton Trans 47:823–835. https://doi.org/10.1039/C7DT03976J

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Z, Zhou X, Wang Y, Chi L, Ruan D, Xuan Y, Cong W, Jin L (2014) Fluorescent staining of glycoproteins in sodium dodecyl sulfate polyacrylamide gels by 4H-[1]-benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide. Analyst 139:2764–2773. https://doi.org/10.1039/C3AN02309E

    Article  CAS  PubMed  Google Scholar 

  23. Jovito R, Neves A, Bortoluzzi AJ, Lanznaster M, Drago V, Haase W (2005) A new unsymmetrical dinucleating ligand and its first FeIIIZnII complex: structure and solid state properties of an unexpected tetranuclear complex containing the [FeIII(μ-OH)2FeIII] structural motif. Inorg Chem Commun 8:323–327. https://doi.org/10.1016/j.inoche.2005.01.007

    Article  CAS  Google Scholar 

  24. Palatinus L, Chapuis G (2007) SUPERFLIP—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790. https://doi.org/10.1107/S0021889807029238

    Article  CAS  Google Scholar 

  25. Sheldrick G (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  26. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  27. Qin W, Baruah M, De Borggraeve WM, Boens N (2006) Photophysical properties of an on/off fluorescent pH indicator excitable with visible light based on a borondipyrromethene-linked phenol. J Photochem Photobiol A 183:190–197. https://doi.org/10.1016/j.jphotochem.2006.03.015

    Article  CAS  Google Scholar 

  28. Ashokkumar P, Weißhoff H, Kraus W, Rurack K (2014) Test-strip-based fluorometric detection of fluoride in aqueous media with a BODIPY-linked hydrogen-bonding receptor. Angew Chem Int Ed 53:2225–2229. https://doi.org/10.1002/anie.201307848

    Article  CAS  Google Scholar 

  29. Palla G, Predieri G, Domiano P, Vignali C, Turner W (1986) Conformational behaviour and E/Z isomerization of N-acyl and N-aroylhydrazones. Tetrahedron 42:3649–3654. https://doi.org/10.1016/S0040-4020(01)87332-4

    Article  CAS  Google Scholar 

  30. Shen B-X, Qian Y, Qi Z-Q, Lu C-G, Sun Q, Xia X, Cui Y-P (2017) Near-infrared BODIPY-based two-photon ClO probe based on thiosemicarbazide desulfurization reaction: naked-eye detection and mitochondrial imaging. J Mater Chem B 5:5854–5861. https://doi.org/10.1039/C7TB01344B

    Article  CAS  PubMed  Google Scholar 

  31. Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev 7:81–122. https://doi.org/10.1016/S0010-8545(00)80009-0

    Article  CAS  Google Scholar 

  32. Lavanant H, Virelizier H, Hoppilliard Y (1998) Reduction of copper(II) complexes by electron capture in an electrospray ionization source. J Am Soc Mass Spectrom 9:1217–1221. https://doi.org/10.1021/jasms.8b01118

    Article  CAS  Google Scholar 

  33. Reis ACDM, Freitas MCR, Resende JALC, Diniz R, Rey NA (2014) Different coordination patterns for two related unsymmetrical compartmental ligands: crystal structures and IR analysis of [Cu(C21H21O2N3)(OH2)(ClO4)]ClO4·2H2O and [Zn2(C22H21O3N2)(C22H20O3N2)]ClO4. J Coord Chem 67:3067–3083. https://doi.org/10.1080/00958972.2014.958080

    Article  CAS  Google Scholar 

  34. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. https://doi.org/10.1021/cr078381n

    Article  CAS  PubMed  Google Scholar 

  35. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed Engl 47:1184–1201. https://doi.org/10.1002/anie.200702070

    Article  CAS  PubMed  Google Scholar 

  36. Castillo M, Raut SL, Price S, Bora I, Jameson LP, Qiu C, Schug KA, Gryczynski Z, Dzyuba SV (2016) Spectroscopic differentiation between monomeric and aggregated forms of BODIPY dyes: effect of 1,1-dichloroethane. RSC Adv 6:68705–68708. https://doi.org/10.1039/C6RA10833D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giovagnini L, Sitran S, Montopoli M, Caparrotta L, Corsini M, Rosani C, Zanello P, Dou QP, Fregona D (2008) Chemical and biological profiles of novel copper(II) complexes containing S-donor ligands for the treatment of cancer. Inorg Chem 47(14):6336–6343

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Nicolás A. Rey thanks FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Brazil) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) for the research fellowships awarded. J. P. Rada appreciates the financial support from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) through the fellowship PDSE-88881.187965/2018-0 and the scholarship 88887.151652/2017-00, as well as CNPq (GM/GD-140228/2018-7). In addition, Prof. Ricardo Q. Aucélio (Department of Chemistry, PUC-Rio) is gratefully acknowledged for the elemental analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicolás A. Rey or Vincent Corcé.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rada, J.P., Forté, J., Gontard, G. et al. Novel luminescent benzopyranothiophene- and BODIPY-derived aroylhydrazonic ligands and their dicopper(II) complexes: syntheses, antiproliferative activity and cellular uptake studies. J Biol Inorg Chem 26, 675–688 (2021). https://doi.org/10.1007/s00775-021-01885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01885-5

Keywords

Navigation