Skip to main content
Log in

Chitosan-capped silver nanoparticles: fabrication, oxidative dissolution, sensing properties, and antimicrobial activity

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Chitosan-capped stable silver sols (Chit/AgNPs) were fabricated using a chemical reduction method. Chit/AgNPs exhibited a sharp surface plasmon resonance (SPR) peak at 420 nm. The resulting orange-colored sols became colorless after the addition of ferric (Fe3+) ions at room temperature. Chitosan formed a stable complex with Fe3+ ions. The relative viscosity measurements revealed that the chitosan was stable in the presence of hydrogen peroxide at room temperature for ca. 1 h. Hydrogen peroxide catalyzed the Fe3+ sensing activity of the Chit/AgNPs, and the mechanism proceeded through a Fenton-like reaction. The AgNPs were oxidized by Fe3+ ions into silver ions. The Al3+, Ba2+, Ca2+, Cu2+, Co2+, Mg2+, Ni2+, Pb2+, Zn2+, Na+, and K+ did not act as sensors for AgNPs. The plasmonic colorimetric detection limit of Fe3+ ions was found to decrease (from 20 to 100 μM) with the pH of the working solution. The microbial growth of chitosan and Chit/AgNPs was evaluated against S. aureus and C. albicans human pathogens using optical density measurements. Chitosan prevented electrolyte exchange on the surface of the bacterial cell walls and disturbed the cells’ physiological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Mahal A, Khullar P, Kumar H, Kaur G, Singh N, Jelokhani-Niaraki M, Bakshi MS (2013) ACS Sustain Chem Eng 1:627–639

    Article  CAS  Google Scholar 

  2. Reicha FM, Sarhan A, Abdel-Hamid MI, El-Sherbiny IM (2012) Carbohydr Polym 89:236–244

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J-J, Gu M-M, Zheng T-T, Zhu J-J (2009) Anal Chem 81:6641–6648

    Article  CAS  PubMed  Google Scholar 

  4. Mohan YM, Raju KM, Sambasivudu K, Singh S, Sreedhar B (2007) J Appl Polym Sci 106:3375–3381

    Article  CAS  Google Scholar 

  5. Shervani Z, Yamamoto Y (2011) Carbohydr Res 346:651–658

    Article  CAS  PubMed  Google Scholar 

  6. Hong KH, Park JL, Sul IH, Youk JH, Kang TJ (2006) J Polym Sci Part B Polym Phys 44:2468–2474

    Article  CAS  Google Scholar 

  7. Rong H, Xuefeng Q, Jie Y, Zikang Z (2002) J Mater Chem 12:3783–3786

    Article  CAS  Google Scholar 

  8. Iqbal S, Zahoor C, Musaddiq S, Hussain M, Begum R, Irfan A, Azam M, Farooqi ZH (2020) Ecotoxicol Environ Saf 202:110924

    Article  CAS  PubMed  Google Scholar 

  9. Hussain I, Farooqi ZH, Ali F, Begum R, Irfan A, Wu W, Wang X, Shahid M, Nisar J (2021) J Mol Liq 335:116106

    Article  CAS  Google Scholar 

  10. Khan Z (2019) Int J Biol Macromol 136:165–176

    Article  CAS  PubMed  Google Scholar 

  11. Bakshi MS, Possmayer F, Petersen NO (2007) J Phys Chem C 111:14113–14124

    Article  CAS  Google Scholar 

  12. Salem MA, Bakr EA, El-Attar HG (2018) Spectrochimica Acta Part A 188:155–163

    Article  CAS  Google Scholar 

  13. Shen C, Shen Y, Wena Y, Wang H, Liu W (2011) Water Res 45:5200–5210

    Article  CAS  PubMed  Google Scholar 

  14. Zimmermann AC, Mecabo A, Fagundes T, Rodrigues CA (2010) J Hazard Mater 179:192–196

    Article  CAS  PubMed  Google Scholar 

  15. Rashid S, Shen C, Chen X, Li S, Chen Y, Wen Y, Liu J (2015) RSC Adv 5:90731–90741

    Article  CAS  Google Scholar 

  16. Begum R, Najeeb J, Ahmad G, Wu W, Irfan A, Al-sehemi AG, Farooqi ZH (2018) React Funct Polym 132:89–97

    Article  CAS  Google Scholar 

  17. Begum R, Farooqi ZH, Aboo AH, Ahmed E, Sharif A, Xiao J (2019) J Hazard Mater 377:399–408

    Article  CAS  PubMed  Google Scholar 

  18. Begum R, Ahmad G, Najeeb J, Wu W, Irfan A, Azam M, Nisar J, Farooqi ZH (2021) Chem Phys Letters 763:138263

    Article  CAS  Google Scholar 

  19. Farooqi ZH, Sultana H, Begum R, Usman M, Ajmal M, Nisar J, Irfan A, Azam M (2020) Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1779247

  20. El-Sherbiny IM, Hefnawy A, Salih E (2016) Int J Biol Macromol 86:782–788

    Article  CAS  PubMed  Google Scholar 

  21. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Sci Technolo Adv Mater 6:335–340

    Article  CAS  Google Scholar 

  22. Sharma P, Mourya M, Choudhary D, Goswami M, Kundu I, Dobhal MP, Tripathi CSP, Guin D (2018) Sens Actuators B Chem 268:310–318

    Article  CAS  Google Scholar 

  23. Jiang H, Chen Z, Cao H, Huang Y (2012) Analyst 137:5560–5564

    Article  CAS  PubMed  Google Scholar 

  24. Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) J Phys Chem C 111:12839–12847

    Article  CAS  Google Scholar 

  25. Chen Z, Zhang X, Cao H, Huang Y (2013) Analyst 138:2343–2349

    Article  CAS  PubMed  Google Scholar 

  26. Ou K-L, Hsu T-C, Liu Y-C, Yang K-H, Sun W-H (2013) J Electroanal Chem 702:66–71

    Article  CAS  Google Scholar 

  27. Gao X, Lu Y, He S, Li X, Chen W (2015) Anal Chim Acta 879:118–125

    Article  CAS  PubMed  Google Scholar 

  28. Duan J, Yin H, Wei R, Wang W (2014) Biosens Bioelectron 57:139–142

    Article  CAS  PubMed  Google Scholar 

  29. Annadhasan M, Muthukumarasamyvel T, Babu VRS, Rajendiran N (2014) ACS Sustain Chem Eng 2:887–896

    Article  CAS  Google Scholar 

  30. Zhou Y, Zhao H, Li C, He P, Peng W, Yuan L, Zeng L, He Y (2012) Talanta 97:331–335

    Article  CAS  PubMed  Google Scholar 

  31. Naseem K, Farooqi ZH, Begum R, Ghufran M, Rehman MZ, Najeeb J, Irfan A, Al-Sehemi AG (2018) J Mol Liq 268:229–238

    Article  CAS  Google Scholar 

  32. Naseem K, Begum R, Wu W, Usman M, Irfan A, Al-Sehemi AG, Farooqi ZH (2019) J Mol Liq 277:522–531

    Article  CAS  Google Scholar 

  33. Naseem K, Begum R, Farooqi ZH, Wu W, Irfan A (2020) Appl Organomet Chem 34:e5742

    Article  CAS  Google Scholar 

  34. Hernandez RB, Franco AP, Yola OR, Lopez-Delgado A, Felcman J, Recio MAL, Merce ALR (2008) J Mole Structu 877:89–99

    Article  CAS  Google Scholar 

  35. Cobley CM, Rycenga M, Zhou F, Li Z-Y, Xia Y (2009) J Phys Chem C 113:16975–16982

    Article  CAS  Google Scholar 

  36. Guo X, Zhang Q, Sun Y, Zhao Q, Yang J (2012) ACS Nano 6:1165–1175

    Article  CAS  PubMed  Google Scholar 

  37. Garrido-Ramíreza EG, Theng BKG, Mora ML (2010) Applied Clay Sci 47:182–192

    Article  CAS  Google Scholar 

  38. Wang G-L, Zhu X-Y, Dong Y-M, Jiao H-J, Wu X-M, Li Z-J (2013) Talanta 107:146–153

    Article  CAS  PubMed  Google Scholar 

  39. Vasileva P, Donkova B, Karadjova I, Dushkin C (2011) Colloids Surfaces A: Physicochem Eng Aspects 382:203–210

    Article  CAS  Google Scholar 

  40. Wang H, Wang H, Li T, Ma J, Li K, Zuo X (2017) Sens Actuators B Chem 239:1205–1212

    Article  CAS  Google Scholar 

  41. Tagad CK, Dugasani SR, Aiyer R, Park S, Kulkarni A, Sabharwal S (2013) Sens Actuators B Chem 183:144–149

    Article  CAS  Google Scholar 

  42. Mohan S, Oluwafemi OS, George SC, Jayachandran VP, Lewu FB, Songca SP, Kalarikkal N, Thomas S (2014) Carbohydr Polym 106:469–474

    Article  CAS  PubMed  Google Scholar 

  43. Albeladi AB, AL-Thabaiti SA, Khan Z (2020) J Mol Liq 302:112565

    Article  CAS  Google Scholar 

  44. Tsao CT, Chang CH, Lin YY, Wu MF, Han JL, Hsieh KH (2011) Carbohyd Res 346:94–102

  45. Roberts GAF, Domszy JG (1982) Int J Biol Macromol 4:374–377

    Article  CAS  Google Scholar 

  46. Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  47. Mie G (1908) Ann Phys 25:377–455

    Article  CAS  Google Scholar 

  48. Sun Y, Xia Y (2003) Analyst 128:686–691

    Article  CAS  PubMed  Google Scholar 

  49. Link S, El-Sayed MA (1999) J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  50. Deivaraj TC, Lala NL, Lee JY (2005) J Colloid Interface Sci 289:402–409

    Article  CAS  PubMed  Google Scholar 

  51. Al-Ghamdi AD, Zaheer Z, Aazam ES (2020) Saudi Pharmaceutical J 28:1035–1048

    Article  CAS  Google Scholar 

  52. Shankar SS, Rai A, Ahmad A, Sastry M (2004) J Colloid Interf Sci 275:496–502

    Article  CAS  Google Scholar 

  53. Khullar P, Singh V, Mahal A, Dave PN, Thakur S, Kaur G, Singh J, Kamboj SS, Bakshi MS (2012) J Phys Chem C 116:8834–8843

    Article  CAS  Google Scholar 

  54. Ali SW, Rajendran S, Joshi M (2011) Carbohyd Polym 83:438–446

    Article  CAS  Google Scholar 

  55. Kabir-ud-Din, Salem JKJ, Kumar S, Rafiquee MZA, Khan Z (1999) J Colloid Interface Sci 213:20–28

  56. Kabir-ud-Din, Rafiquee MZA, Akram M, Khan Z (1999) Int J Chem Kinet 31:103–111

  57. Cotton FA, Wilkinson G (1980) Advanced Inorganic Chemistry-A Comprehensive Text, 4th ed. Wiley, p 758

  58. Henglein A (1993) J Phys Chem 97:5457–5471

    Article  CAS  Google Scholar 

  59. Goia DV, Matijevic E (1998) New J Chem 1203–1215

  60. Devi LG, Kumar SG, Reddy KM, Munikrishnappa C (2009) J Hazard Mater 164:459–467

    Article  CAS  Google Scholar 

  61. Khan Z, Al-Thabaiti SA (2018) J Photochem Photobiolo B: Biology 180:259–267

    Article  CAS  Google Scholar 

  62. Qin CQ, Du YM, Xiao L (2002) Polym Degrad Stab 76:211–218

    Article  CAS  Google Scholar 

  63. Tian F, Liu Y, Hu K, Zhao B (2003) J Mater Sci 38:4709–4712

    Article  CAS  Google Scholar 

  64. Chang KLB, Tai M-C, Cheng F-H (2001) J Agric Food Chem 49:4845–4851

    Article  CAS  PubMed  Google Scholar 

  65. Kadam D, Momin B, Palamthodi S, Lele SS (2019) Carbohydr Polym 211:124–132

    Article  CAS  PubMed  Google Scholar 

  66. Roller S, Covill N (1999) Int J Food Microbiolo 47:67–77

    Article  CAS  Google Scholar 

  67. Beera C, Foldbjerga R, Hayashib Y, Sutherlandb DS, Autrupa H (2012) Toxicol Lett 208:286–292

    Article  CAS  Google Scholar 

  68. Kittler S, Greulich C, Diendorf J, Kcoller M, Epple M (2010) Chem Mater 22:4548–4554

    Article  CAS  Google Scholar 

  69. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2007) J Biol Inorg Chem 12:527–534

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G:93-247-1441. The author, therefore, acknowledges with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoya Zaheer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 206 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaheer, Z. Chitosan-capped silver nanoparticles: fabrication, oxidative dissolution, sensing properties, and antimicrobial activity. J Polym Res 28, 348 (2021). https://doi.org/10.1007/s10965-021-02673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02673-0

Keywords

Navigation