Skip to main content

Advertisement

Log in

All-solid-state reference electrode based on a solid-state electrolyte of high densified Lithium lanthanum titanium oxide (LLTO)

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Using powders treated by sand milling as starting materials, high densified lithium lanthanum titanium oxide (LLTO) ceramics with high conductivity were prepared. A novel all-solid-state reference electrode was fabricated using the as-prepared LLTO ceramics for electrochemical measurements in marine environments that require robustness, no clogging, and resistance to high salinity and high temperatures and pressures. This reference electrode functioned without any filling solution and any porous junction between it and the analyte. The characteristics, stability, and impedance of the all-solid-state reference electrode were examined in different pH buffer aqueous solutions; its I–V curves were recorded during cyclic voltammetric experiments, which were then compared with those obtained for a classic Ag/AgCl reference electrode. The fabricated reference electrode was connected to an Ir/IrO2 working electrode to prepare an all-solid-state pH sensor for measuring the pH of simulated seawater and for capturing variations in the behavior of the reference electrode on addition of acidic or alkaline solutions. This all-solid-state potentiometric sensor can be used in association with other sensing electrodes and in harsh environments, such as at great ocean depths and in high temperature and pressure environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. C.L.Y. Inaguma, M. Itoh, T.B. Nakmura, Solid State Commun. 86, 689–693 (1993)

    Article  CAS  Google Scholar 

  2. J.Y.Y. Inaguma, Y.J. Shan, M.T. Nakamura, J. Electrochem. Soc. 142, 8–11 (1995)

    Article  Google Scholar 

  3. T. Teranishi, Y. Ishii, H. Hayashi, A. Kishimoto, Solid State Ion. 284, 1–6 (2016)

    Article  CAS  Google Scholar 

  4. S. Lorant, C. Bohnke, M. Roffat, O. Bohnke, Electrochim. Acta. 80, 418–425 (2012)

    Article  CAS  Google Scholar 

  5. V.T.S. Stramare, W. Weppner, Chem. Mater. 15, 3974–3990 (2003)

    Article  CAS  Google Scholar 

  6. H.T.T. Le, D.T. Ngo, Y.-J. Kim, C.-N. Park, C.-J. Park, Electrochim. Acta. 248, 232–242 (2017)

    Article  CAS  Google Scholar 

  7. S. Noh, J. Kim, M. Eom, D. Shin, Ceram. Int. 39, 8453–8458 (2013)

    Article  CAS  Google Scholar 

  8. S.L. Fernandes, G. Gasparotto, G.F. Teixeira, M.A. Cebim, E. Longo, M.A. Zaghete, Ceram. Int. 44, 21578–21584 (2018)

    Article  CAS  Google Scholar 

  9. L.C.Y. Inaguma, M. Itoh, T. Nakamura, Solid State Ion. 70(71), 196–202 (1994)

    Article  Google Scholar 

  10. A. Mei, X. Wang, J. Lan, Y. Feng, H. Geng, Y. Lin, C. Nan, Electrochim. Acta. 55, 2958–2963 (2010)

    Article  CAS  Google Scholar 

  11. Y. Inaguma, T. Katsumata, M. Itoh, Y. Morii, J. Solid State Chem. 166, 67–72 (2002)

    Article  CAS  Google Scholar 

  12. T. Durán, E. Climent-Pascual, M.T. Pérez-Prior, B. Levenfeld, A. Varez, I. Sobrados, J. Sanz, Adv. Powder Technol. 28, 514–520 (2017)

    Article  Google Scholar 

  13. W. Araki, Y. Nagakura, Y. Arai, Ceram. Int. 46, 6270–6275 (2020)

    Article  CAS  Google Scholar 

  14. F. Schröckert, N. Schiffmann, E.C. Bucharsky, K.G. Schell, M.J. Hoffmann, Solid State Ion. 328, 25–29 (2018)

    Article  Google Scholar 

  15. Y. Inaguma, M. Itoh, Solid State Ion. 86–88, 257–260 (1996)

    Article  CAS  Google Scholar 

  16. C. Bohnke, B. Regrag, F. Leberre, J. Fourquet, N. Randrianantoandro, Solid State Ion. 176, 73–80 (2005)

    Article  CAS  Google Scholar 

  17. M. Vijayakumar, Q.N. Pham, C. Bohnke, J. Eur. Ceram. Soc. 25, 2973–2976 (2005)

    Article  CAS  Google Scholar 

  18. T. Brousse, P. Fragnaud, R. Marchand, D.M. Schleich, O. Bohnke, K. West, J. Power Sources 68, 412–415 (1997)

    Article  CAS  Google Scholar 

  19. N.K. Al-Shara, F. Sher, S.Z. Iqbal, Z. Sajid, G.Z. Chen, J. Energy Chem. 49, 33–41 (2020)

    Article  Google Scholar 

  20. G. Qiao, Y. Hong, G. Song, H. Li, J. Ou, Sens. Actuators B Chem. 168, 172–177 (2012)

    Article  CAS  Google Scholar 

  21. Y. Sun, P. Guan, Y. Liu, H. Xu, S. Li, D. Chu, Crit. Rev. Solid State Mater. Sci. 44, 265–282 (2018)

    Article  Google Scholar 

  22. M. Vijayakumar, Y. Inaguma, W. Mashiko, M.P. Crosnier-Lopez, C. Bohnke, Chem. Mater. 16, 2719–2724 (2004)

    Article  CAS  Google Scholar 

  23. W.B. Chang, M.C. Gyeong, Solid State Ion. 140, 285–292 (2001)

    Article  Google Scholar 

  24. H. Geng, A. Mei, Y. Lin, C. Nan, Mater. Sci. Eng., B 164, 91–95 (2009)

    Article  CAS  Google Scholar 

  25. D. Yuansheng, X. Jinfeng, N. Hongqiang, Z. Guohong, J. Danyu, L. Qiang, J. Ceram. Soc. Jpn. 125, 520–523 (2017)

    Article  Google Scholar 

  26. S. Wennig, U. Langklotz, G.M. Prinz, A. Schmidt, B. Oberschachtsiek, A. Lorke, A. Heinzel, J. Appl. Electrochem. 45, 1043–1055 (2015)

    Article  CAS  Google Scholar 

  27. F. LaMantia, C.D. Wessells, H.D. Deshazer, Y. Cui, Electrochem. Commun. 31, 141–144 (2013)

    Article  CAS  Google Scholar 

  28. S. Joshi, S. Lanka, S. Ippolito, S. Bhargava, M. Sunkara, J. Mater. Chem. A. 4,16418–16431 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Strategic Priority Research Program of Chinese Academy of Sciences [grant number XDA22020604]. The funding source(s) was not involved in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heng, Y., Wang, W., Li, Q. et al. All-solid-state reference electrode based on a solid-state electrolyte of high densified Lithium lanthanum titanium oxide (LLTO). J Electroceram 47, 23–30 (2021). https://doi.org/10.1007/s10832-021-00262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00262-7

Keywords

Navigation