Skip to main content
Log in

Ecotoxicological response of potentially toxic metal (PTM) pollution in estuarine mangrove habitat of Indian Sundarban

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Contamination of potentially toxic metals (PTMs) can be detrimental to ecological processes, diversity and physiology of biological components of the surrounding habitat of estuarine and coastal environment. In our study, an inclusive approach to measure ecotoxicological parameters was followed considering spatial concentration of PTMs in the sediment system, sediment quality status, ecological risk level, bioconcentration in mangrove tissue and resulting biochemical and antioxidative response in mangroves Avicennia alba and Excoecaria agallocha in eight locations in and around Indian Sundarban. Sediments in location L4 and L8 showed highest concentration of PTMs having maximum enrichment factors, geo-accumulation indices, contamination factors and pollution load indices signifying progressively deteriorated sediment quality of the estuary and considerable ecological risk for cadmium. Significant statistical correlation observed between chlorophyll content, free radical scavenging activity, reducing ability and stress enzyme activity (peroxidase, catalase and super oxide dismutase) of mangroves with PTM concentration in respective study areas. This work will help to frame effective prediction, assessment and management policies in this extremely eco-sensitive region by envisioning the status of augmented human activities leading to considerable metal stress in the estuarine sediment and consequent ecotoxicological response as the coping up mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Akhand A, Chanda A, Dutta S, Hazra S and Sanyal P 2012 Comparative study of heavy metals in selected mangroves of Sundarban ecosystem, India; J. Environ. Biol. 33 1045–1049.

    Google Scholar 

  • Alloway B J 2013 Sources of heavy metals and metalloids in soils; In: Heavy metals in soils; Springer, Netherlands, pp. 11–50.

    Chapter  Google Scholar 

  • Antizar-Ladislao B, Mondal P, Mitra S and Sarkar S K 2015 Assessment of trace metal contamination level and toxicity in sediments from coastal regions of West Bengal, eastern part of India; Mar. Pollut. Bull. 101(2) 886–894.

    Article  Google Scholar 

  • Arnon D I 1949 Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris; Plant. Physiol. 24(1) 1.

    Article  Google Scholar 

  • Bakshi M, Ghosh S, Chakraborty D, Hazra S and Chaudhuri P 2018 Assessment of potentially toxic metal (PTM) pollution in mangrove habitats using biochemical markers: A case study on Avicennia officinalis L. in and around Sundarban, India; Mar. Pollut. Bull. 133 157–172.

    Article  Google Scholar 

  • Bakshi M, Ghosh S, Ram S S, Sudarshan M, Chakraborty A, Biswas J K, Shaheen S M, Niazi N K, Rinklebe J and Chaudhuri P 2019 Sediment quality, elemental bioaccumulation and antimicrobial properties of mangroves of Indian Sundarban; Environ. Geochem. Health 41(1) 275–296.

    Article  Google Scholar 

  • Bakshi M, Ram S S, Ghosh S, Chakraborty A, Sudarshan M and Chaudhuri P 2017 Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban; Environ. Monit. Assess. 189(5) 221.

    Article  Google Scholar 

  • Bandaranayake W M 2002 Bioactivities, bioactive compounds and chemical constituents of mangrove plants; Wet. Ecol. Manag. 10(6) 421–452.

    Article  Google Scholar 

  • Banerjee D, Chakrabarti S, Hazra A K, Banerjee S, Ray J and Mukherjee B 2008 Antioxidant activity and total phenolics of some mangroves in Sundarbans; African J. Biotech. 7(6) 805–810.

    Google Scholar 

  • Banerjee K, Roy Chowdhury M, Sengupta K, Sett S and Mitra A 2012a Influence of anthropogenic and natural factors on the mangrove soil of Indian Sundarbans wetland; Arch. Environ. Sci. 6 80–91.

    Google Scholar 

  • Banerjee K, Senthilkumar B, Purvaja R and Ramesh R 2012b Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, northeast coast of India; Environ. Geochem. Health 34(1) 27–42.

    Article  Google Scholar 

  • Bashir F, Siddiqi T O and Iqbal M 2007 The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide; Environ. Pollut. 147(1) 94–100.

    Article  Google Scholar 

  • Bastami K D, Bagheri H, Kheirabadi V, Zaferani G, Teymori M G, Hamzehpoor A et al. 2014 Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea; Mar. Pollut. Bull. 81 262–267.

    Article  Google Scholar 

  • Bayen S 2012 Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: A review; Environ. Int. 48 84–101.

    Article  Google Scholar 

  • Beauchamp C and Fridovich I 1971 Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels; Anal. Biochem. 44(1) 276–287.

    Article  Google Scholar 

  • Bhattacharya B D, Nayak D C, Sarkar S K, Biswas S N, Rakshit D and Ahmed M K 2015 Distribution of dissolved trace metals in coastal regions of Indian Sundarban mangrove wetland: A multivariate approach; J. Clean. Prod. 96 233–243.

    Article  Google Scholar 

  • Birch G F, Vanderhayden M and Olmos M 2011 The nature and distribution of metals in soils of the Sydney estuary catchment, Australia; Water Air Soil Pollut. 216 581–604.

    Article  Google Scholar 

  • Birch G F, Chang C H, Lee J H and Churchill L J 2013 The use of vintage surficial sediment data and sedimentary cores to determine past and future trends in estuarine metal contamination (Sydney Estuary, Australia); Sci. Total Environ. 454 542–561.

    Article  Google Scholar 

  • Blois M S 1958 Antioxidant determination by the use of a stable free radical; Nature 181 1199–1200.

    Article  Google Scholar 

  • Braconi D, Bernardini G and Santucci A 2011 Linking protein oxidation to environmental pollutants: Redox proteomic approaches; J. Proteom. 74(11) 2324–2337.

    Article  Google Scholar 

  • Bradford M M 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding; Anal. Biochem. 72(12) 248–254.

    Article  Google Scholar 

  • Caeiro S, Costa M H, Ramos T B, Fernandes F, Silveira N, Coimbra A, Medeiros G and Painho M 2005 Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach; Ecol. Indic. 5 151–169.

    Article  Google Scholar 

  • Caregnato F F, Koller C E, MacFarlane G R and Moreira J C 2008 The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh; Mar. Pollut. Bull. 56(6) 1119–1127.

  • Chandlee J M and Scandalios J G 1984 Analysis of variants affecting the catalase developmental program in maize scutellum; Theor. Appl. Genet. 69(1) 71–77.

    Article  Google Scholar 

  • Chaudhuri P, Nath B and Birch G 2014 Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: The role of rhizosphere processes; Mar. Pollut. Bull. 79(1) 284–292.

    Article  Google Scholar 

  • Cheng S, Tam N F Y, Li R, Shen X, Niu Z, Chai M and Qiu G Y 2017 Temporal variations in physiological responses of Kandelia obovata seedlings exposed to multiple heavy metals; Mar. Pollut. Bull. 124(2) 1089–1095.

    Article  Google Scholar 

  • Chowdhury R, Favas P J, Pratas J, Jonathan M P, Ganesh P S and Sarkar S K 2015 Accumulation of trace metals by mangrove plants in Indian Sundarban Wetland: Prospects for phytoremediation; Int. J. Phytoremediation 17(9) 885–894.

    Article  Google Scholar 

  • Cipollini D F 1998 The induction of soluble peroxidase activity in bean leaves by wind-induced mechanical perturbation; Am. J. Botany 85(11) 1586–1591.

    Article  Google Scholar 

  • Crichton R R 2016 Metal Toxicity–An Introduction; In: Metal Chelation in Medicine, DOI: https://doi.org/10.1039/9781782623892-00001.

  • Dai M, Lu H, Liu W, Jia H, Hong H, Liu J and Yan C 2017 Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation; Ecotoxicol. Environ. Saf. 139 272–279.

    Article  Google Scholar 

  • Dasgupta N, Chowdhury P and Das S 2015 Comparative Adaptability Assessment of Two Mangroves from Indian Sundarbans: Some Biochemical Appearances; Nat. Sci. 7(12) 519.

    Google Scholar 

  • de Almeida Duarte L F, de Souza C A, Pereira C D S and Pinheiro M A A 2017 Metal toxicity assessment by sentinel species of mangroves: In situ case study integrating chemical and biomarkers analyses; Ecotoxicol. Environ. Saf. 145 367–376.

    Article  Google Scholar 

  • Dhame S, Kumar A, Ramanathan A L and Chaudhari P 2016 Elemental composition, distribution and control of biogenic silica in the anthropogenically disturbed and pristine zone inter-tidal sediments of Indian Sundarbans mangrove-estuarine complex; Mar. Pollut. Bull. 111(1) 68–85.

    Article  Google Scholar 

  • Doğanlar Z B and Atmaca M 2011 Influence of airborne pollution on Cd, Zn, Pb, Cu, and Al accumulation and physiological parameters of plant leaves in Antakya (Turkey); Water Air Soil Pollut. 214(1) 509–523.

    Article  Google Scholar 

  • Duarte B, Santos D and Caçador I 2013 Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: Search for an efficient biomarker; Funct. Plant. Biol. 40(9) 922–930.

    Article  Google Scholar 

  • Frontier S, Pichod-Viale D, Leprêtre A, Davoult D and Luczak C 2008 Ecosystèmes Structure, fonctionnement, evolution; Dunod, 4ème édition, Paris, 558p.

  • Ghosh S, Bakshi M, Gupta K, Mahanty S, Bhattacharyya S and Chaudhuri P 2020 A preliminary study on upstream migration of mangroves in response to changing environment along River Hooghly, India; Mar. Pollut. Bull. 151 110840.

  • Ghosh S, Bakshi M, Kumar A, Ramanathan A L, Biswas J K, Bhattacharyya S and Rinklebe J 2019a Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly–Matla estuarine system, India; Environ. Geochem. Health 41(1) 53–70.

    Article  Google Scholar 

  • Ghosh S, Bakshi M, Mitra S, Mahanty S, Ram S S, Banerjee S and Chaudhuri P 2019b Elemental geochemistry in acid sulphate soils – A case study from reclaimed islands of Indian Sundarban; Mar. Pollut. Bull. 138 501–510.

    Article  Google Scholar 

  • Ghosh S, Ram S S, Bakshi M, Chakraborty A, Sudarshan M and Chaudhuri P 2016 Vertical and horizontal variation of elemental contamination in sediments of Hooghly Estuary, India; Mar. Pollut. Bull. 109(1) 539–549.

    Article  Google Scholar 

  • Gong Q J, Deng J, Xiang Y C, Wang Q F and Yang L Q 2008 Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing; J. China Univ. Geosci. 19 230–241.

    Article  Google Scholar 

  • Gu Y G, Wang Z H, Lu S H, Jiang S J, Mu D H and Shu Y H 2012 Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China; Environ. Pollut. 163 248–255.

    Article  Google Scholar 

  • Guangqiu Q, Chongling Y and Haoliang L 2007 Influence of heavy metals on the carbohydrate and phenolics in mangrove, Aegiceras corniculatum L., seedlings; Bull. Environ. Contam. Toxicol. 78(6) 440–444.

  • Guo W, Huo S, Xi B, Zhang J and Wu F 2015 Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: Distribution, bioavailability, and risk; Ecol. Eng. 81 243–255.

    Article  Google Scholar 

  • Hakanson L 1980 An ecological risk index for aquatic pollution control. A sedimentological approach; Water Res. 14(8) 975–1001.

    Article  Google Scholar 

  • Halliwell B 2006 Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life; Plant Physiol. 141(2) 312–322.

    Article  Google Scholar 

  • Harish S R and Murugan K 2011 Oxidative stress indices in natural populations of Avicennia alba Blume as biomarker of environmental pollution; Environ. Res. 111(8) 1070–1073.

    Article  Google Scholar 

  • He Z L, Yang X E and Stoffella P J 2005 Trace elements in agroecosystems and impacts on the environment; J. Trace Elem. Med. Biol. 19(23) 125–140.

    Article  Google Scholar 

  • Huang G Y and Wang Y S 2010 Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals; J. Haz. Mat. 182(1) 848–854.

    Article  Google Scholar 

  • Huang G Y, Wang Y S, Sun C C, Dong J D and Sun Z X 2010 The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza); Oceanol. Hydrobiol. St. 39(1) 11–25.

    Article  Google Scholar 

  • Kandziora-Ciupa M, Ciepał R, Nadgórska-Socha A and Barczyk G 2013 A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas; Environ. Sci. Pollut. Research. Int. 20(7) 4920.

  • Kruger N J 2009 The Bradford method for protein quantitation; The protein protocols handbook 17–24.

  • Kumar A, Ramanathan A L, Prasad M B K and Datta D 2014 Kumar M and Sappal S M 2016 Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: A baseline study before Sundarban oil spill of December; Environ. Sci. Pollut. Res. 23(9) 8985–8999.

    Article  Google Scholar 

  • Lasat M M 2002 Phytoextraction of toxic metals; J. Environ. Qual. 31(1) 109–120.

    Google Scholar 

  • Lavid N, Schwartz A, Yarden O and Tel-Or E 2001 The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae); Planta 212(3) 323–331.

    Article  Google Scholar 

  • Li Y X, Yu S J, Liu D, Proksch P and Lin W H 2012 Inhibitory Effects of Polyphenols toward HCV from the Mangrove Plant Excoecaria agallocha L; Bioorg. Med. Ch. Lett. 22 1099–1102.

    Article  Google Scholar 

  • Liu S, Shi X, Liu Y, Zhu Z, Yang G, Zhu A and Gao J 2011 Concentration distribution and assessment of heavy metals in sediments of mud area from inner continental shelf of the East China Sea; Environ. Earth Sci. 64 567–579.

    Article  Google Scholar 

  • Long E R and MacDonald D D 1998 Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems; Human Ecol. Risk Assess. 4 1019–1039.

    Article  Google Scholar 

  • Long E R, MacDonald D D, Smith S L and Calder F D 1995 Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments; Environ. Manag. 19 81–97.

    Article  Google Scholar 

  • Long E R, MacDonald D D, Severn C G and Hong C B 2000 Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guideline; Environ. Toxicol. Ch. 19 2598–2601.

    Article  Google Scholar 

  • Long E R, Field L J and MacDonald D D 1998 Predicting toxicity in marine sediments with numerical sediment quality guidelines; Environ. Toxicol. Ch. 17(4) 714–727.

    Article  Google Scholar 

  • Lyimo T L and Mushi D 2005 Sulfide concentration and redox potential patterns in mangrove forests of Dar es Salaam: Effects on Avicennia marina and Rhizophora mucronata seedling establishment; West Indian Ocean J. Mar. Sci. 4(2) 163–174.

    Google Scholar 

  • MacDonald D D, Carr R S, Calder F D, Long E R and Ingersoll C G 1996 Development and evaluation of sediment quality guidelines for Florida coastal waters; Ecotoxicol. 5 253–278.

    Article  Google Scholar 

  • Macfarlane G R and Burchett M D 2001 Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey Mangrove Avicennia marina (Forsk.) Veirh; Mar. Pollut. Bull. 42 233–240.

    Article  Google Scholar 

  • MacFarlane G R, Koller C E and Blomberg S P 2007 Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies; Chemosphere 69(9) 1454–1464.

    Article  Google Scholar 

  • MacFarlane G R 2002 Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems; Mar. Pollut. Bull. 44(3) 244–256.

  • Maulvault A L, Camacho C, Barbosa V, Alves R, Anacleto P, Pousão-Ferreira P and Diniz M S 2019 Living in a multi-stressors environment: An integrated biomarker approach to assess the ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification; Environ. Res. 169 7–25.

    Article  Google Scholar 

  • Montargès-Pelletier E, Chardot V, Echevarria G, Michot L J, Bauer A and Morel J L 2008 Identification of nickel chelators in three hyperaccumulating plants: An X-ray spectroscopic study; Phytochemistry 69(8) 1695–1709.

    Article  Google Scholar 

  • Morsch V M, Schetinger M R C, Martins A F and Rocha J B T 2002 Effects of cadmium, lead, mercury and zinc on aminolevulinic acid dehydratase activity from radish leaves; Biol. Plant. 45(1) 85–89.

    Article  Google Scholar 

  • Müller G 1969 Index of geoaccumulation in the sediments of the Rhine River; GeoJournal 2 108–118.

    Google Scholar 

  • Nath B, Birch G and Chaudhuri P 2013 Trace metal biogeochemistry in mangrove ecosystems: A comparative assessment of acidified (by acid sulfate soils) and non-acidified sites; Sci. Total Environ. 463 667–674.

    Article  Google Scholar 

  • Nath B, Chaudhuri P and Birch G 2014a Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia; Ecotoxicol. Environ. Saf. 107 284–290.

    Article  Google Scholar 

  • Nath B, Birch G and Chaudhuri P 2014b Assessment of sediment quality in Avicennia marina dominated embayments of Sydney Estuary: The potential use of pneumatophores (aerial roots) as a bio-indicator of trace metal contamination; Sci. Total Environ. 472 1010–1022.

    Article  Google Scholar 

  • Oyaizu M 1986 Studies on products of browning reaction; Jpn. J. Nutr. Diet. 44(6) 307–315.

    Article  Google Scholar 

  • Ray A K, Tripathy S C, Patra S and Sarma V V 2006 Assessment of Godavari estuarine mangrove ecosystem through trace metal studies; Environ. Int. 32(2) 219–223.

    Article  Google Scholar 

  • Reimann C and Caritat P D 2000 Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry; Environ. Sci. Technol. 34(24) 5084–5091.

    Article  Google Scholar 

  • Rogers K G, Goodbred S L and Mondal D R 2013 Monsoon sedimentation on the ‘abandoned’ tide-influenced Ganges–Brahmaputra delta plain; Estuar; Coast Shelf. Sci. 131 297–309.

    Article  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas M C, Pazmino D M, Testillano P S, Risueño M C, Luis A and Sandalio L M 2009 Cellular response of pea plants to cadmium toxicity: Cross talk between reactive oxygen species, nitric oxide, and calcium; Plant Physiol. 150(1) 229–243.

    Article  Google Scholar 

  • Sharma P and Dubey R S 2007 Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum; Plant Cell Rep. 26(11) 2027–2038.

    Article  Google Scholar 

  • Sharma S S and Dietz K J 2009 The relationship between metal toxicity and cellular redox imbalance; Trends Plant Sci. 14(1) 43–50.

    Article  Google Scholar 

  • Singleton V L and Rossi J A 1965 Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents; American J. Enology Viticulture 16(3) 144–158.

    Google Scholar 

  • Skaldina O and Sorvari J 2017 Biomarkers of ecotoxicological effects in social insects; In: Perspectives in environmental toxicology; Springer, Cham., pp. 203–214.

    Chapter  Google Scholar 

  • Spencer K L and Macleod C L 2002 Distribution and partitioning of heavy metals in estuarine sediment cores and implications for the use of sediment quality standards; Hydrol. Earth Syst. Sci. 6 989–998.

    Article  Google Scholar 

  • Sutherland R A 2000 Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii; Environ. Geol. 39(6) 611–627.

    Article  Google Scholar 

  • Taylor S and McLennan S 1985 The continental crust: Its composition and evolution; Oxford: Blackwell.

    Google Scholar 

  • Tomlinson D L, Wilson J G, Harris C R and Jeffrey D W 1980 Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index; Helgoländer Meeresuntersuchungen 33(1) 566.

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA) 1997 Method 3051 A. Microwave assisted acid digestion of sediments, sludge’s, soils and oils. USEPA, U.S. Government Printing Office, Washington D.C., http://www.epa.gov/SW-846/pdfs/3051a.pdf.

  • Verbruggen N, Hermans C and Schat H 2009 Molecular mechanisms of metal hyperaccumulation in plants; New Phytologist 181(4) 759–776.

    Article  Google Scholar 

  • Walkley A and Black I A 1934 An examination of a rapid method for determination of organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents; Soil Sci. 63 251–257.

  • Watts M J, Mitra S, Marriott A L and Sarkar S K 2017 Source, distribution and ecotoxicological assessment of multielements in superficial sediments of a tropical turbid estuarine environment: A multivariate approach; Mar. Pollut. Bull. 115(12) 130–140.

    Article  Google Scholar 

  • Wedepohl K H 1995 The composition of the continental crust; Geochim. Cosmochim. Acta 59(7) 1217–1232.

    Article  Google Scholar 

  • Yan Z, Sun X, Xu Y, Zhang Q and Li X 2017 Accumulation and tolerance of mangroves to heavy metals: A review; Curr. Pollut. Rep. 3(4) 302–317.

    Article  Google Scholar 

  • Yıldırım A, Mavi A and Kara A A 2001 Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts; J. Agric. Food Ch. 49(8) 4083–4089.

  • Yuan H, Song J, Li X, Li N and Duan L 2012 Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea; Mar. Pollut. Bull. 64 2151–2159.

    Article  Google Scholar 

  • Zhang F Q, Wang Y S, Lou Z P and Dong J D 2007 Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza); Chemosphere 67(1) 44–50.

    Article  Google Scholar 

  • Zhang J and Liu C L 2002 Riverine composition and estuarine geochemistry of particulate metals in China – weathering features, anthropogenic impact and chemical fluxes; Estuar. Coast Shelf Sci. 54 1051–1070.

    Article  Google Scholar 

  • Zhishen J, Mengcheng T and Jianming W 1999 The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals; Food Ch. 64(4) 555–559.

    Article  Google Scholar 

Download references

Acknowledgements

MB is thankful to UGC, University of Calcutta & Govt. of West Bengal, India [Grant No. UGC/971/Fellow(Univ)]; SG and PC acknowledge DST, Govt. of India [Grant No. SR/FT/LS-155/2011] for providing financial and infrastructural support. MB, SG, SM, TG and PC acknowledge CU-UPE facility of ICP-OES.

Author information

Authors and Affiliations

Authors

Contributions

Madhurima Bakshi: Data curation, formal analysis, investigation, validation, software, writing (original draft, review and editing). Somdeep Ghosh: Data curation, methodology, formal analysis, writing (review and editing). Shouvik Mahanty: Analysis and data curation. Tanushree Gaine: Analysis. Punarbasu Chaudhuri: Conceptualization and funding acquisition.

Corresponding author

Correspondence to Madhurima Bakshi.

Additional information

Communicated by Maripi Dileep

This article is part of the Topical Collection: Advances in Coastal Research.

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakshi, M., Ghosh, S., Mahanty, S. et al. Ecotoxicological response of potentially toxic metal (PTM) pollution in estuarine mangrove habitat of Indian Sundarban. J Earth Syst Sci 130, 171 (2021). https://doi.org/10.1007/s12040-021-01662-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01662-7

Keywords

Navigation