Skip to main content

Advertisement

Log in

Evaluation of the Antioxidant, Antimicrobial, Haemolytic and Cytotoxic Effect of Eggshell Based Hydroxyapatite

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study focused on the eggshell-derived hydroxyapatite (EHA) employed as biomedical applications. The as-synthesized EHA samples were prepared by microwave irradiation method and further characterized through fourier transform infrared spectroscopy and powder X-Ray diffraction analysis indicates phase purity, crystallinity, and crystallite size of EHA. The morphology of the EHA sample was observed through a scanning electron microscope (SEM) a revealed self-assembled flower shape with energy-dispersive X-Ray spectroscopy (EDX) for elemental analysis. The hemolytic assay suggests an acceptable compatibility material for the EHA sample. Moreover the agar well diffusion test, none of the EHA samples showed a zone of inhibition against pathogenic strains. Besides, the in vitro bioactivity of EHA nanocomposite was studied by antioxidant activity indicates well free radical scavenging when compared with ascorbic acid. Further, cell cytotoxicity studies were systemically investigated for different days on MC3T3 osteoblast-like cell lines and it was found that EHA nanocomposite improved the cell proliferation. These results strongly suggesting that developed eggshell-derived hydroxyapatite (EHA) significantly alters the antioxidant activity, non-toxic blood cells, and cytotoxicity for MC3T3 cells. Therefore, it can be a prospective approach to acquire precursor material for making an orthopaedic and dental application.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Younis, P. Alicia, and I. Amr (2020). J. Eng. Reg. 1, 51–63.

    Google Scholar 

  2. A. Marian, F. Ackun, T. Clyde, Overby, and Benoit (2021). Curr. Opin. Biomed. Eng. 100308.

  3. D. Muthu, M. Gowri, G. Suresh Kumar, V. S. Kattimani, and E. K. Girija (2019). New J. Chem (RSC). 43, 5315–5324.

    Article  CAS  Google Scholar 

  4. D. Bernad-Beltran, A. Simo, and M. D. Bovea (2014). J. Wast. Manage. 34, 2434–2444.

    Article  CAS  Google Scholar 

  5. H. U. Seung, L. Jaehong, I. S. Seok, R. O. Myoung, C. K. Yu, S. H. Hyung, H. R. Sang, and Hojeong (2021). J. Bioact. Mater. 6 (10), 3608–3619.

    Google Scholar 

  6. E. M. Rivera-Munoz (2011). Biomed. Eng. Front. Chall. 75–98.

  7. N. Eliaz and N. Metoki (2017). J. Mater. (MDPI) 10 (4), 334.

    Article  Google Scholar 

  8. M. Saleem, S. Rasheed, and C. Yougen (2020). J. Sci. Tech. Adv. Mat. 21, 242–266.

    Article  CAS  Google Scholar 

  9. Z. Bal, T. Kaito, F. Korkusuz, and H. Yoshikawa (2019). J. Emer. Mat. 3, 521–544.

    Google Scholar 

  10. M. Li, P. Xiong, F. Yan, S. Li, C. Ren, and Z. Yin (2018). J. Bioact. Mat. 3, 1–18.

    Article  Google Scholar 

  11. S. Varun, S. Ishani, M. Lalit, and Pandey (2019). Mat. Biomedical. Eng. 205–209.

  12. P. Aditi, M. Swati, K. S. Rajeev, M. Rita, N. Viond Kumar, G. Sourabh, and B. Kantesh (2018). J. Mat. Sci. Eng. 17, 3175–7.

    Google Scholar 

  13. H. Avashthi, R. K. Pathak, V. S. Gaur, S. Singh, and A. Kumar (2020). J. Net. Mod. Ana. Hea. Info. Bioinf. 9 (33), 1–23.

  14. A. S. Meza-Siccha, M. A. Aguilar-Luis, W. Silva-Caso, and F. Mazulis (2019). Int. J. Denti. 4292976, 1–5.

  15. A. Nagaraj and S. Samiappan (2019). J. Front Microbiol. 10, 1757.

    Article  Google Scholar 

  16. S. Khan, V. Kumar, P. Roy, and K. Patit Paban (2019). RSC Adv. 9, 39768–39779.

    Article  CAS  Google Scholar 

  17. D. S. Gomes, A. M. C. Santos, G. A. Nrves, and R. R. Menezes (2019). J. Cera. 65, 282–302.

    CAS  Google Scholar 

  18. M. Guoing (2019). J. Mat. Sci. Eng. 688, 033057.

  19. M. A. M. Castro, T. O. Portelas, G. S. Correa, M. M. Oliveira, J. H. G. Rangel, S. F. Rodrigues, and J. M. R. Mercury (2020). J Ceramicay vidrio. https://doi.org/10.1016/j.bsecv.2020.06.003.

    Article  Google Scholar 

  20. P. Hui, S. L. Meena, R. D. Gurbhinder Singh, Agarawal, and S. Prakash (2010). J. Min. Mat. Char. Eng. 09, 683–692.

    Google Scholar 

  21. M. Baghbanzadeh, L. Carbone, P. D. Cozzoli, and C. O. Kappe (2011). J. Ange. Chemi. Int. Edi. 50 (48), 11312–11359.

    Article  CAS  Google Scholar 

  22. U. Sabu, G. Logesh, M. Rashad, A. Joy, and M. Balasubramanian (2018). J. Cer. Int. 45, 66718–66722.

    Google Scholar 

  23. M. N. Hassan, M. M. Mahmoud, A. A. El-Fattah, and S. Kandil (2016). J. Cer. Int. 42 (3), 3725–3744.

    Article  CAS  Google Scholar 

  24. Y. J. Zhu and F. Chen (2014). J. Chem. Revi. 114 (12), 6462–6555.

    Article  CAS  Google Scholar 

  25. H. Wen-Fu, H. Hsueh-Chuan, H. Shih-Kuang, H. Chun-Wei, and W. Shih-Ching (2013). J. Cer. Int. 39, 6467–6473.

    Article  Google Scholar 

  26. T. Duygui, D. Baykali, K. Acikgozi, and Yildiz (2009). J. Science (GU) 22 (3), 117–121.

    Google Scholar 

  27. R. Bacani, T. S. Martins, D. G. Lamas, I. O. Fabregas, L. Andrini, and M. C. A. Fantini. J. Act. Cry. Sect, A Found. Crystal 67, 431.

  28. G. Radha, S. Balakumar, V. Balaji, and V. Elangovan (2015). J. Mat. Sci. Eng. 15, S0928-4931.

    Google Scholar 

  29. A. Tatiana, P. Alexey, B. Alexander, and M. Igor (2019). Sci Rep. 9, 5147.

    Article  Google Scholar 

  30. B. Ryan, P. Khodadadi, P. Joshua, B. S. Slusser, and E. Slusser (2018). J. Blood. 132, 2281.

    Article  Google Scholar 

  31. J. Xie and K. M. Schaich (2014). J. Agri. Food Chem. 62, 4251–4260.

    Article  CAS  Google Scholar 

  32. I. Gulçin, Z. Huyut, M. Elmastaş, and H. Y. Aboul-Enein (2010). Ara. J. Che. 3 (1), 43–53.

    Article  Google Scholar 

  33. K. Pawanjit and A. Saroj (2011). J. Med. Che. Res. 20, 9–15.

    Article  Google Scholar 

  34. S. Santhosh, N. Manivannan, C. Ragavendran, N. Mathivanan, D. Natarajan, N. Hemalatha, and R. Dhandapani (2019). J. of Ap. Micro. 127, 481–494.

    Article  CAS  Google Scholar 

  35. N. Karthi, T. Kalaiyarasu, S. Kandakumar, P. Mariyappan, and V. Manju (2016). RSC. Ad. 6 (51), 45064–45076.

    Article  CAS  Google Scholar 

  36. Z. Geng, Y. Cheng, L. Ma, Z. Li, Z. Cui, S. Zhu, and X. Yang (2017). J. Biomat. App. 7, 896–905.

    Google Scholar 

  37. A. Kazemi, M. Abdellahi, A. Khajesh-Sharafabadi, A. Khandan, and N. Ozada (2017). J. Mat. Sci. Eng: C. 71, 604–610.

    Article  CAS  Google Scholar 

  38. K. Himanshu and P. Satya (2016). J. Min. Mat. Char. Eng. 4 (02), 119–126.

    Google Scholar 

  39. G. Vidhya, G. Suresk Kumar, V. S. Kattamani, and E. K. Girrja (2019). J. Mat. Today Pro. 15, 344–352.

    Article  CAS  Google Scholar 

  40. G. S. Kumar and E. K. Girija (2013). J. Cer. In. 39, 8293–8299.

    CAS  Google Scholar 

  41. A. Amiri roundana, S. Ramesha, A. Niakanb, Y. H. Wonga, and M. Akhtari zavareha (2017). J. Cera. Pro. Res. 18, 699–712.

  42. S. Marta, Laranjeira, M. Ana, F. Jorge, C. Susana, C. Elisio, S. S. Alice, J. F. Paulo, and J. M. Fernando (2016). J. Col. Sur B; Bioint. 146, 363–374.

  43. E. Loizou, D. J. Mayhew, V. Martlew, and B. V. Murthy (2018). J. Anaesthesia 73, 1557–1563.

    Article  CAS  Google Scholar 

  44. A. Amiery, AI-Amiery, K. Yasameen, AI-Majedy, A. Abdul, H. Kadhum, and M. Abu Bakar (2015). J. Plos One. 10, e0132175.

    Article  Google Scholar 

  45. D. Gopi, S. Ramya, D. Rajeswari, P. Karthikeyan, and L. Kavitha (2014). J. Col. Surf A: Physi. Eng. Asp. 451, 172–180.

    Article  CAS  Google Scholar 

  46. O. S. Aslanturk (2018). J Inte Chopen. https://doi.org/10.5772/intechopen.71923.

    Article  Google Scholar 

Download references

Acknowledgements

The authors (Venkatachalam Murugesan, Girija Easwaradas Kreedapathy, Manju Vaiyapuri) express their sincere thanks to Department of Science and Technology (DST), New Delhi, India (Project Ref. No. DST/TSG/WM/2015/576/G) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaiyapuri Manju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugesan, V., Kreedapathy, G.E. & Vaiyapuri, M. Evaluation of the Antioxidant, Antimicrobial, Haemolytic and Cytotoxic Effect of Eggshell Based Hydroxyapatite. J Clust Sci 33, 825–834 (2022). https://doi.org/10.1007/s10876-021-02153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02153-x

Keywords

Navigation