Skip to main content

Advertisement

Log in

Focused ultrasound: growth potential and future directions in neurosurgery

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Over the past two decades, vast improvements in focused ultrasound (FUS) technology have made the therapy an exciting addition to the neurosurgical armamentarium. In this time period, FUS has gained US Food and Drug Administration (FDA) approval for the treatment of two neurological disorders, and ongoing efforts seek to expand the lesion profile that is amenable to ultrasonic intervention. In the following review, we highlight future applications for FUS therapy and compare its potential role against established technologies, including deep brain stimulation and stereotactic radiosurgery. Particular attention is paid to tissue ablation, blood–brain-barrier opening, and gene therapy. We also address technical and infrastructural challenges involved with FUS use and summarize the hurdles that must be overcome before FUS becomes widely accepted in the neurosurgical community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen KT, Wei KC, Liu HL (2019) Theranostic strategy of focused ultrasound induced blood–brain barrier opening for CNS disease treatment. Front Pharmacol 10:86. https://doi.org/10.3389/fphar.2019.00086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beccaria K, Canney M, Bouchoux G, Desseaux C, Grill J, Heimberger AB, Carpentier A (2020) Ultrasound-induced blood–brain barrier disruption for the treatment of gliomas and other primary CNS tumors. Cancer Lett 479:13–22. https://doi.org/10.1016/j.canlet.2020.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Hughes A, Hynynen K (2017) Design of patient-specific focused ultrasound arrays for non-invasive brain therapy with increased trans-skull transmission and steering range. Phys Med Biol 62:L9–L19. https://doi.org/10.1088/1361-6560/aa7cd5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stavarache MA, Chazen JL, Kaplitt MG (2021) Foundations of magnetic resonance-guided focused ultrasonography. World Neurosurg 145:567–573. https://doi.org/10.1016/j.wneu.2020.08.051

    Article  PubMed  Google Scholar 

  5. Zhu M, Sun Z, Ng CK (2017) Image-guided thermal ablation with MR-based thermometry. Quant Imaging Med Surg 7:356–368. https://doi.org/10.21037/qims.2017.06.06

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arvanitis CD, Livingstone MS, Vykhodtseva N, McDannold N (2012) Controlled ultrasound-induced blood–brain barrier disruption using passive acoustic emissions monitoring. PLoS ONE 7:e45783. https://doi.org/10.1371/journal.pone.0045783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones RM, Hynynen K (2019) Advances in acoustic monitoring and control of focused ultrasound-mediated increases in blood–brain barrier permeability. Br J Radiol 92:20180601. https://doi.org/10.1259/bjr.20180601

    Article  PubMed  PubMed Central  Google Scholar 

  8. (2018) Focused ultrasound foundation. 2019 State of the field report.

  9. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ Jr, Rothlind J, Sagher O, Reda D, Moy CS, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein J, Stoner G, Heemskerk J, Huang GD (2009) Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301:63–73. https://doi.org/10.1001/jama.2008.929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, Schwartz M, Hynynen K, Lozano AM, Shah BB, Huss D, Dallapiazza RF, Gwinn R, Witt J, Ro S, Eisenberg HM, Fishman PS, Gandhi D, Halpern CH, Chuang R, Butts Pauly K, Tierney TS, Hayes MT, Cosgrove GR, Yamaguchi T, Abe K, Taira T, Chang JW (2016) A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 375:730–739. https://doi.org/10.1056/NEJMoa1600159

    Article  PubMed  Google Scholar 

  11. Huss DS, Dallapiazza RF, Shah BB, Harrison MB, Diamond J, Elias WJ (2015) Functional assessment and quality of life in essential tremor with bilateral or unilateral DBS and focused ultrasound thalamotomy. Mov Disord 30:1937–1943. https://doi.org/10.1002/mds.26455

    Article  PubMed  Google Scholar 

  12. Hamani C, Pilitsis J, Rughani AI, Rosenow JM, Patil PG, Slavin KS, Abosch A, Eskandar E, Mitchell LS, Kalkanis S (2014) Deep brain stimulation for obsessive-compulsive disorder: systematic review and evidence-based guideline sponsored by the American Society for Stereotactic and Functional Neurosurgery and the Congress of Neurological Surgeons (CNS) and endorsed by the CNS and American Association of Neurological Surgeons. Neurosurgery 75:327–333; quiz 333. https://doi.org/10.1227/neu.0000000000000499

    Article  PubMed  Google Scholar 

  13. Ondo W, Almaguer M, Jankovic J, Simpson RK (2001) Thalamic deep brain stimulation: comparison between unilateral and bilateral placement. Arch Neurol 58:218–222. https://doi.org/10.1001/archneur.58.2.218

    Article  CAS  PubMed  Google Scholar 

  14. Fishman PS, Frenkel V (2017) Focused ultrasound: an emerging therapeutic modality for neurologic disease. Neurotherapeutics 14:393–404. https://doi.org/10.1007/s13311-017-0515-1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bretsztajn L, Gedroyc W (2018) Brain-focussed ultrasound: what’s the “FUS” all about? A review of current and emerging neurological applications. Br J Radiol 91:20170481. https://doi.org/10.1259/bjr.20170481

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, Horak FB, Okun MS, Foote KD, Krack P, Pahwa R, Henderson JM, Hariz MI, Bakay RA, Rezai A, Marks WJ Jr, Moro E, Vitek JL, Weaver FM, Gross RE, DeLong MR (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68:165. https://doi.org/10.1001/archneurol.2010.260

    Article  PubMed  Google Scholar 

  17. Patel DM, Walker HC, Brooks R, Omar N, Ditty B, Guthrie BL (2015) Adverse events associated with deep brain stimulation for movement disorders: analysis of 510 consecutive cases. Neurosurgery 11(Suppl 2):190–199. https://doi.org/10.1227/neu.0000000000000659

    Article  PubMed  Google Scholar 

  18. Park YS, Jung NY, Na YC, Chang JW (2019) Four-year follow-up results of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor. Mov Disord 34:727–734. https://doi.org/10.1002/mds.27637

    Article  PubMed  Google Scholar 

  19. Chang JW, Park CK, Lipsman N, Schwartz ML, Ghanouni P, Henderson JM, Gwinn R, Witt J, Tierney TS, Cosgrove GR, Shah BB, Abe K, Taira T, Lozano AM, Eisenberg HM, Fishman PS, Elias WJ (2018) A prospective trial of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: results at the 2-year follow-up. Ann Neurol 83:107–114. https://doi.org/10.1002/ana.25126

    Article  CAS  PubMed  Google Scholar 

  20. Meng Y, Solomon B, Boutet A et al (2018) Magnetic resonance-guided focused ultrasound thalamotomy for treatment of essential tremor: A 2-year outcome study. Mov Disord 33:1647–1650

    Article  PubMed  Google Scholar 

  21. Halpern CH, Santini V, Lipsman N et al (2019) Three-year follow-up of prospective trial of focused ultrasound thalamotomy for essential tremor. Neurology 93:e2284–e2293

    Article  PubMed  Google Scholar 

  22. Sinai A, Nassar M, Eran A et al (2019) Magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: a 5-year single-center experience. J Neurosurg 133(2):417–424

    Article  Google Scholar 

  23. Cabrera LY, Bittlinger M, Lou H, Müller S, Illes J (2018) Reader comments to media reports on psychiatric neurosurgery: past history casts shadows on the future. Acta Neurochir (Wien) 160:2501–2507. https://doi.org/10.1007/s00701-018-3696-4

    Article  Google Scholar 

  24. Cabrera LY, Courchesne C, Kiss ZHT, Illes J (2019) Clinical perspectives on psychiatric neurosurgery. Stereotact Funct Neurosurg 97:391–398. https://doi.org/10.1159/000505080

    Article  PubMed  Google Scholar 

  25. Pepper J, Hariz M, Zrinzo L (2015) Deep brain stimulation versus anterior capsulotomy for obsessive–compulsive disorder: a review of the literature. J Neurosurg 122:1028–1037. https://doi.org/10.3171/2014.11.Jns132618

    Article  PubMed  Google Scholar 

  26. Beisteiner R, Matt E, Fan C, Baldysiak H, Schönfeld M, Philippi Novak T, Amini A, Aslan T, Reinecke R, Lehrner J, Weber A, Reime U, Goldenstedt C, Marlinghaus E, Hallett M, Lohse-Busch H (2020) Transcranial pulse stimulation with ultrasound in Alzheimer’s disease—a new navigated focal brain therapy. Adv Sci (Weinh) 7:1902583. https://doi.org/10.1002/advs.201902583

    Article  Google Scholar 

  27. Eguchi K, Shindo T, Ito K, Ogata T, Kurosawa R, Kagaya Y, Monma Y, Ichijo S, Kasukabe S, Miyata S (2018) Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia—crucial roles of endothelial nitric oxide synthase. Brain Stimul 11:959–973

    Article  PubMed  Google Scholar 

  28. Lin W-T, Chen R-C, Lu W-W, Liu S-H, Yang F-Y (2015) Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer’s disease rat model. Sci Rep 5:1–7

    Google Scholar 

  29. (2019) Radiating in eloquent regions. In: Quinones-Hinojosa A, Chaichana KL, Mahato RK (eds) brain mapping: indications and techniques, 1st edn. Thieme Medical Publishers, Inc. https://medone-neurosurgery.thieme.com/6NFJG

  30. Higuchi Y, Matsuda S, Serizawa T (2017) Gamma knife radiosurgery in movement disorders: indications and limitations. Mov Disord 32:28–35. https://doi.org/10.1002/mds.26625

    Article  PubMed  Google Scholar 

  31. Ram Z, Cohen ZR, Harnof S, Tal S, Faibel M, Nass D, Maier SE, Hadani M, Mardor Y (2006) Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 59:949–955; discussion 955–946. https://doi.org/10.1227/01.Neu.0000254439.02736.D8

    Article  PubMed  Google Scholar 

  32. Ahmed HU, Zacharakis E, Dudderidge T, Armitage JN, Scott R, Calleary J, Illing R, Kirkham A, Freeman A, Ogden C, Allen C, Emberton M (2009) High-intensity-focused ultrasound in the treatment of primary prostate cancer: the first UK series. Br J Cancer 101:19–26. https://doi.org/10.1038/sj.bjc.6605116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaussy C, Thüroff S (2003) The status of high-intensity focused ultrasound in the treatment of localized prostate cancer and the impact of a combined resection. Curr Urol Rep 4:248–252. https://doi.org/10.1007/s11934-003-0077-0

    Article  PubMed  Google Scholar 

  34. Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, Baum J, Singer S, Jolesz FA (2001) MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 219:176–185. https://doi.org/10.1148/radiology.219.1.r01ap02176

    Article  CAS  PubMed  Google Scholar 

  35. Stewart EA, Rabinovici J, Tempany CM, Inbar Y, Regan L, Gostout B, Hesley G, Kim HS, Hengst S, Gedroyc WM (2006) Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids. Fertil Steril 85:22–29. https://doi.org/10.1016/j.fertnstert.2005.04.072

    Article  PubMed  Google Scholar 

  36. Zhou YF (2011) High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol 2:8–27. https://doi.org/10.5306/wjco.v2.i1.8

    Article  PubMed  PubMed Central  Google Scholar 

  37. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K (2010) Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery 66:323–332; discussion 332. https://doi.org/10.1227/01.Neu.0000360379.95800.2f

    Article  PubMed  Google Scholar 

  38. Quadri SA, Waqas M, Khan I, Khan MA, Suriya SS, Farooqui M, Fiani B (2018) High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus 44:E16. https://doi.org/10.3171/2017.11.Focus17610

    Article  PubMed  Google Scholar 

  39. Boutet A, Gwun D, Gramer R, Ranjan M, Elias GJB, Tilden D, Huang Y, Li SX, Davidson B, Lu H, Tyrrell P, Jones RM, Fasano A, Hynynen K, Kucharczyk W, Schwartz ML, Lozano AM (2019) The relevance of skull density ratio in selecting candidates for transcranial MR-guided focused ultrasound. J Neurosurg 132:1785–1791. https://doi.org/10.3171/2019.2.Jns182571

    Article  PubMed  Google Scholar 

  40. Jones RM, Huang Y, Meng Y, Scantlebury N, Schwartz ML, Lipsman N, Hynynen K (2020) Echo-focusing in transcranial focused ultrasound thalamotomy for essential tremor: a feasibility study. Mov Disord 35:2327–2333. https://doi.org/10.1002/mds.28226

    Article  PubMed  Google Scholar 

  41. Jung NY, Rachmilevitch I, Sibiger O, Amar T, Zadicario E, Chang JW (2019) Factors related to successful energy transmission of focused ultrasound through a skull: a study in human cadavers and its comparison with clinical experiences. J Korean Neurosurg Soc 62:712–722. https://doi.org/10.3340/jkns.2018.0226

    Article  PubMed  PubMed Central  Google Scholar 

  42. Coluccia D, Fandino J, Schwyzer L, O’Gorman R, Remonda L, Anon J, Martin E, Werner B (2014) First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Therap Ultrasound 2:17. https://doi.org/10.1186/2050-5736-2-17

    Article  Google Scholar 

  43. McDannold N, Vykhodtseva N, Jolesz FA, Hynynen K (2004) MRI investigation of the threshold for thermally induced blood–brain barrier disruption and brain tissue damage in the rabbit brain. Magn Reson Med 51:913–923. https://doi.org/10.1002/mrm.20060

    Article  PubMed  Google Scholar 

  44. Izadifar Z, Izadifar Z, Chapman D, Babyn P (2020) An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications. J Clin Med. https://doi.org/10.3390/jcm9020460

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sukovich JR, Cain CA, Pandey AS, Chaudhary N, Camelo-Piragua S, Allen SP, Hall TL, Snell J, Xu Z, Cannata JM, Teofilovic D, Bertolina JA, Kassell N, Xu Z (2018) In vivo histotripsy brain treatment. J Neurosurg. https://doi.org/10.3171/2018.4.Jns172652

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meng Y, Hynynen K, Lipsman N (2021) Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 17:7–22. https://doi.org/10.1038/s41582-020-00418-z

    Article  PubMed  Google Scholar 

  47. Cohen-Inbar O, Xu Z, Sheehan JP (2016) Focused ultrasound-aided immunomodulation in glioblastoma multiforme: a therapeutic concept. J Therap Ultrasound 4:2. https://doi.org/10.1186/s40349-016-0046-y

    Article  Google Scholar 

  48. Man J, Shoemake JD, Ma T, Rizzo AE, Godley AR, Wu Q, Mohammadi AM, Bao S, Rich JN, Yu JS (2015) Hyperthermia sensitizes glioma stem-like cells to radiation by inhibiting AKT signaling. Cancer Res 75:1760–1769. https://doi.org/10.1158/0008-5472.Can-14-3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, Chen H (2019) Ultrasound hyperthermia technology for radiosensitization. Ultrasound Med Biol 45:1025–1043. https://doi.org/10.1016/j.ultrasmedbio.2018.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alexandrov AV, Köhrmann M, Soinne L, Tsivgoulis G, Barreto AD, Demchuk AM, Sharma VK, Mikulik R, Muir KW, Brandt G, Alleman J, Grotta JC, Levi CR, Molina CA, Saqqur M, Mavridis D, Psaltopoulou T, Vosko M, Fiebach JB, Mandava P, Kent TA, Alexandrov AW, Schellinger PD (2019) Safety and efficacy of sonothrombolysis for acute ischaemic stroke: a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Neurol 18:338–347. https://doi.org/10.1016/s1474-4422(19)30026-2

    Article  PubMed  Google Scholar 

  51. Gerhardson T, Sukovich JR, Chaudhary N, Chenevert TL, Ives K, Hall TL, Camelo-Piragua S, Xu Z, Pandey AS (2020) Histotripsy clot liquefaction in a porcine intracerebral hemorrhage model. Neurosurgery 86:429–436. https://doi.org/10.1093/neuros/nyz089

    Article  PubMed  Google Scholar 

  52. Maxwell AD, Cain CA, Duryea AP, Yuan L, Gurm HS, Xu Z (2009) Noninvasive thrombolysis using pulsed ultrasound cavitation therapy—histotripsy. Ultrasound Med Biol 35:1982–1994. https://doi.org/10.1016/j.ultrasmedbio.2009.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zafar A, Quadri SA, Farooqui M, Ortega-Gutiérrez S, Hariri OR, Zulfiqar M, Ikram A, Khan MA, Suriya SS, Nunez-Gonzalez JR, Posse S, Mortazavi MM, Yonas H (2019) MRI-guided high-intensity focused ultrasound as an emerging therapy for stroke: a review. J Neuroimaging 29:5–13. https://doi.org/10.1111/jon.12568

    Article  PubMed  Google Scholar 

  54. Huang Y, Alkins R, Schwartz ML, Hynynen K (2017) Opening the blood–brain barrier with MR imaging-guided focused ultrasound: preclinical testing on a trans-human skull porcine model. Radiology 282:123–130. https://doi.org/10.1148/radiol.2016152154

    Article  PubMed  Google Scholar 

  55. Nhan T, Burgess A, Cho EE, Stefanovic B, Lilge L, Hynynen K (2013) Drug delivery to the brain by focused ultrasound induced blood–brain barrier disruption: quantitative evaluation of enhanced permeability of cerebral vasculature using two-photon microscopy. J Control Release 172:274–280. https://doi.org/10.1016/j.jconrel.2013.08.029

    Article  CAS  PubMed  Google Scholar 

  56. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperth 19:267–294. https://doi.org/10.1080/0265673031000119006

    Article  CAS  Google Scholar 

  57. Park J, Zhang Y, Vykhodtseva N, Jolesz FA, McDannold NJ (2012) The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. J Control Release 162:134–142. https://doi.org/10.1016/j.jconrel.2012.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang FY, Ko CE, Huang SY, Chung IF, Chen GS (2014) Pharmacokinetic changes induced by focused ultrasound in glioma-bearing rats as measured by dynamic contrast-enhanced MRI. PLoS ONE 9:e92910. https://doi.org/10.1371/journal.pone.0092910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meng Y, Jones RM, Davidson B, Huang Y, Pople CB, Surendrakumar S, Hamani C, Hynynen K, Lipsman N (2020) Technical principles and clinical workflow of transcranial MR-guided focused ultrasound. Stereotact Funct Neurosurg. https://doi.org/10.1159/000512111

    Article  PubMed  Google Scholar 

  60. Carpentier A, Canney M, Vignot A, Reina V, Beccaria K, Horodyckid C, Karachi C, Leclercq D, Lafon C, Chapelon JY, Capelle L, Cornu P, Sanson M, Hoang-Xuan K, Delattre JY, Idbaih A (2016) Clinical trial of blood–brain barrier disruption by pulsed ultrasound. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaf6086

    Article  PubMed  Google Scholar 

  61. Idbaih A, Canney M, Belin L, Desseaux C, Vignot A, Bouchoux G, Asquier N, Law-Ye B, Leclercq D, Bissery A, De Rycke Y, Trosch C, Capelle L, Sanson M, Hoang-Xuan K, Dehais C, Houillier C, Laigle-Donadey F, Mathon B, André A, Lafon C, Chapelon JY, Delattre JY, Carpentier A (2019) Safety and feasibility of repeated and transient blood–brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin Cancer Res 25:3793–3801. https://doi.org/10.1158/1078-0432.Ccr-18-3643

    Article  CAS  PubMed  Google Scholar 

  62. Mainprize T, Lipsman N, Huang Y, Meng Y, Bethune A, Ironside S, Heyn C, Alkins R, Trudeau M, Sahgal A, Perry J, Hynynen K (2019) Blood–brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep 9:321. https://doi.org/10.1038/s41598-018-36340-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Park SH, Kim MJ, Jung HH, Chang WS, Choi HS, Rachmilevitch I, Zadicario E, Chang JW (2020) One-year outcome of multiple blood–brain barrier disruptions with temozolomide for the treatment of glioblastoma. Front Oncol. https://doi.org/10.3389/fonc.2020.01663

    Article  PubMed  PubMed Central  Google Scholar 

  64. Curley CT, Sheybani ND, Bullock TN, Price RJ (2017) Focused ultrasound immunotherapy for central nervous system pathologies: challenges and opportunities. Theranostics 7:3608–3623. https://doi.org/10.7150/thno.21225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McMahon D, Bendayan R, Hynynen K (2017) Acute effects of focused ultrasound-induced increases in blood–brain barrier permeability on rat microvascular transcriptome. Sci Rep 7:45657. https://doi.org/10.1038/srep45657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McMahon D, Hynynen K (2017) Acute inflammatory response following increased blood–brain barrier permeability induced by focused ultrasound is dependent on microbubble dose. Theranostics 7:3989–4000. https://doi.org/10.7150/thno.21630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK, Bresler M, Burks SR, Frank JA (2017) Disrupting the blood–brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci USA 114:E75-e84. https://doi.org/10.1073/pnas.1614777114

    Article  CAS  PubMed  Google Scholar 

  68. Cho EE, Drazic J, Ganguly M, Stefanovic B, Hynynen K (2011) Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood–brain barrier opening. J Cereb Blood Flow Metab 31:1852–1862. https://doi.org/10.1038/jcbfm.2011.59

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lipsman N, Meng Y, Bethune AJ, Huang Y, Lam B, Masellis M, Herrmann N, Heyn C, Aubert I, Boutet A, Smith GS, Hynynen K, Black SE (2018) Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun 9:2336. https://doi.org/10.1038/s41467-018-04529-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang S, Xu Y, Wang B, Qiao W, Liu D, Li Z (2004) Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release 100:165–180. https://doi.org/10.1016/j.jconrel.2004.08.019

    Article  CAS  PubMed  Google Scholar 

  71. Fan CH, Lin CY, Liu HL, Yeh CK (2017) Ultrasound targeted CNS gene delivery for Parkinson’s disease treatment. J Control Release 261:246–262. https://doi.org/10.1016/j.jconrel.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  72. Chang EL, Ting CY, Hsu PH, Lin YC, Liao EC, Huang CY, Chang YC, Chan HL, Chiang CS, Liu HL, Wei KC, Fan CH, Yeh CK (2017) Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors. J Control Release 255:164–175. https://doi.org/10.1016/j.jconrel.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  73. Bai L, Liu Y, Guo K, Zhang K, Liu Q, Wang P, Wang X (2019) Ultrasound facilitates naturally equipped exosomes derived from macrophages and blood serum for orthotopic glioma treatment. ACS Appl Mater Interfaces 11:14576–14587. https://doi.org/10.1021/acsami.9b00893

    Article  CAS  PubMed  Google Scholar 

  74. Pan M, Zhang Y, Deng Z, Yan F, Hong G (2018) Noninvasive and local delivery of adenoviral-mediated herpes simplex virus thymidine kinase to treat glioma through focused ultrasound-induced blood–brain barrier opening in rats. J Biomed Nanotechnol 14:2031–2041. https://doi.org/10.1166/jbn.2018.2642

    Article  CAS  PubMed  Google Scholar 

  75. Yang Q, Zhou Y, Chen J, Huang N, Wang Z, Cheng Y (2021) Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int J Nanomed 16:185–199. https://doi.org/10.2147/ijn.S286221

    Article  Google Scholar 

  76. Zhao G, Huang Q, Wang F, Zhang X, Hu J, Tan Y, Huang N, Wang Z, Wang Z, Cheng Y (2018) Targeted shRNA-loaded liposome complex combined with focused ultrasound for blood brain barrier disruption and suppressing glioma growth. Cancer Lett 418:147–158. https://doi.org/10.1016/j.canlet.2018.01.035

    Article  CAS  PubMed  Google Scholar 

  77. Song Z, Wang Z, Shen J, Xu S, Hu Z (2017) Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats. Int J Nanomed 12:1717–1729. https://doi.org/10.2147/ijn.S128848

    Article  CAS  Google Scholar 

  78. Fan CH, Ting CY, Lin CY, Chan HL, Chang YC, Chen YY, Liu HL, Yeh CK (2016) Noninvasive, targeted, and non-viral ultrasound-mediated GDNF-plasmid delivery for treatment of Parkinson’s disease. Sci Rep. https://doi.org/10.1038/srep19579

    Article  PubMed  PubMed Central  Google Scholar 

  79. Weber-Adrian D, Thévenot E, O’Reilly MA, Oakden W, Akens MK, Ellens N, Markham-Coultes K, Burgess A, Finkelstein J, Yee AJ, Whyne CM, Foust KD, Kaspar BK, Stanisz GJ, Chopra R, Hynynen K, Aubert I (2015) Gene delivery to the spinal cord using MRI-guided focused ultrasound. Gene Ther 22:568–577. https://doi.org/10.1038/gt.2015.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kumar KK, Bhati MT, Ravikumar VK, Ghanouni P, Stein SC, Halpern CH (2019) MR-guided focused ultrasound versus radiofrequency capsulotomy for treatment-refractory obsessive–compulsive disorder: a cost-effectiveness threshold analysis. Front Neurosci 13:66. https://doi.org/10.3389/fnins.2019.00066

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li C, Gajic-Veljanoski O, Schaink AK, Higgins C, Fasano A, Sikich N, Dhalla I, Ng V (2019) Cost-effectiveness of magnetic resonance-guided focused ultrasound for essential tremor. Mov Disord 34:735–743. https://doi.org/10.1002/mds.27587

    Article  PubMed  Google Scholar 

  82. Mahajan UV, Ravikumar VK, Kumar KK, Ku S, Ojukwu DI, Kilbane C, Ghanouni P, Rosenow JM, Stein SC, Halpern CH (2020) Bilateral deep brain stimulation is the procedure to beat for advanced Parkinson disease: a meta-analytic, cost-effective threshold analysis for focused ultrasound. Neurosurgery. https://doi.org/10.1093/neuros/nyaa485

    Article  PubMed  PubMed Central  Google Scholar 

  83. Meng Y, Pople CB, Kalia SK, Kalia LV, Davidson B, Bigioni L, Li DZ, Suppiah S, Mithani K, Scantlebury N, Schwartz ML, Hamani C, Lipsman N (2020) Cost-effectiveness analysis of MR-guided focused ultrasound thalamotomy for tremor-dominant Parkinson’s disease. J Neurosurg. https://doi.org/10.3171/2020.5.Jns20692

    Article  PubMed  Google Scholar 

  84. Ravikumar VK, Parker JJ, Hornbeck TS, Santini VE, Pauly KB, Wintermark M, Ghanouni P, Stein SC, Halpern CH (2017) Cost-effectiveness of focused ultrasound, radiosurgery, and DBS for essential tremor. Mov Disord 32:1165–1173. https://doi.org/10.1002/mds.26997

    Article  PubMed  Google Scholar 

  85. Corneliuson O, Björk-Eriksson T, Daxberg E, Fhager A, Persson J, Pettersson J, Sjögren P, Skagervik I, Strandell A (2015) Transcranial magnetic resonance guided focused ultrasound treatment of essential tremor, neuropathic pain and Parkinson’s. HTA-Centrum 82

  86. Man S, Schold JD, Uchino K (2017) Impact of stroke center certification on mortality after ischemic stroke: the Medicare Cohort from 2009 to 2013. Stroke 48:2527–2533. https://doi.org/10.1161/strokeaha.116.016473

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for the production of this study. MZ receives research funding from the National Institutes of Health (5T32CA009695-27, MPI). GL receives research support from Bristol Myers Squibb, Novocure, and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MZ, GL. Methodology: MZ, AJR, GL. Writing—original draft preparation: MZ, AJR, QZ. Writing—review and editing: MZ, AJR, QZ, GL. Funding acquisition: Not applicable. Resources: Not applicable. Supervision: GL.

Corresponding author

Correspondence to Michael Zhang.

Ethics declarations

Conflict of interest

GL is a consultant for Medtronic, a speaker for DePuy Synthes/Johnson & Johnson, and owns stock in Abbott, Biogen, BioMarin Pharmaceutical, Inc., Bristol Myers Squibb, Exact Sciences, GlaxoSmithKline, Gilead Sciences, Inc., Merck & Co., Pfizer, and Stryker.

Informed consent

All authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Rodrigues, A., Zhou, Q. et al. Focused ultrasound: growth potential and future directions in neurosurgery. J Neurooncol 156, 23–32 (2022). https://doi.org/10.1007/s11060-021-03820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03820-9

Keywords

Navigation