Skip to main content
Log in

β-Lactam Resistance Gene NDM-1 in the Aquatic Environment: A Review

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

New Delhi Metallo-β-lactamase-1 (NDM-1) offers carbapenem antibiotics resistance that creates an evolving challenge in treating bacterial infections. NDM-1-bearing strains were observed in surface waters around New Delhi in 2010 and after then identified globally. The usage of antibiotics may hasten the growth of the NDM-1-producing bacteria, which pose severe hazards to human and animal health. The emergence of the NDM-1 in the aquatic environment is turning out to be a growing concern worldwide. NDM-1 gene conferring resistance to a widespread class of antibiotics has been observed in bacteria disseminated in animal production wastewaters, hospital sewage, domestic sewage, industrial effluents, wastewater treatment plants, drinking water, surface water, and even in groundwater. This review recapitulates the currently published research studies on the prevalence and geographical distribution of the NDM-1 gene in the aquatic environment, its habitats, and healthcare risk associated with NDM-1-producing bacteria, in addition to molecular techniques employed to reveal the occurrence of the NDM-1 in the aquatic environment, including conventional polymerase chain reaction, real-time qPCR, DNA hybridization, and microarray-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Khan AU, Maryam L, Zarrilli R (2017) Structure, genetics, and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol 17:101. https://doi.org/10.1186/s12866-017-1012-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berrazeg M, Diene S, Medjahed L, Parola P, Drissi M, Raoult D, Rolain J (2014) New Delhi metallo-beta-lactamase around the world: an Review using Google Maps. Euro Surveill 19: pii_20809. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId_20809

  3. Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362. https://doi.org/10.1016/s1473-3099(11)70059-7

    Article  PubMed  Google Scholar 

  4. Wilson ME, Chen LH (2012) NDM-1 and the role of travel in its dissemination. Curr Infect Dis Rep 14:213–226. https://doi.org/10.1007/s11908-012-0252-x

    Article  PubMed  Google Scholar 

  5. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the U.K.: a molecular, biological, and epidemiological study. Lancet Infect Dis 10(9):597–602. https://doi.org/10.1016/S1473-3099(10)70143-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dortet L, Nordmann P, Poirel L (2012) Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter Baumannii. Antimicrob Agents Chemother 56(4):1693–1697. https://doi.org/10.1128/AAC.05583-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Savard P, Gopinath R, Zhu W, Kitchel B, Rasheed JK, Tekle T, Roberts A, Ross T, Razeq J, Landrum BM, Wilson LE, Limbago B, Perl TM, Carroll KC (2011) First NDM-positive Salmonella Spp. strain identified in the United States. Antimicrob Agents Chemother 55(12):5957–5958

    Article  CAS  Google Scholar 

  8. Mulvey MR, Grant JM, Plewes K, Roscoe D, Boyd DA (2011) New Delhi metallo-β-lactamase in Klebsiella Pneumoniae and Escherichia Coli, Canada. Emerging Infect Dis 17(1):103. https://doi.org/10.3201/eid1701.101358

    Article  CAS  Google Scholar 

  9. Williamson DA, Sidjabat HE, Freeman JT, Roberts SA, Silvey A, Woodhouse R, Mowat E, Dyet K, Paterson DL, Blackmore T, Burns A, Heffernan H (2012) Identification and molecular characterization of New Delhi metallo-β-lactamase-1 (NDM-1)-and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. Int J Antimicrob Agents 39(6):529–533. https://doi.org/10.1016/j.ijantimicag.2012.02.017

    Article  CAS  PubMed  Google Scholar 

  10. Pfeifer Y, Witte W, Holfelder M, Busch J, Nordmann P, Poirel L (2011) NDM-1-Producing Escherichia Coli in Germany. Antimicrob Agents Chemother 55(3):1318–1319

    Article  CAS  Google Scholar 

  11. Poirel L, Schrenzel J, Cherkaoui A, Bernabeu S, Renzi G, Nordmann P (2011) Molecular analysis of NDM-1-producing Enterobacterial isolates from Geneva, Switzerland. J Antimicrob Chemother 66(8):1730–1733

    Article  CAS  Google Scholar 

  12. Poirel L, Fortineau N, Nordmann P (2011) International transfer of NDM-1-producing Klebsiella Pneumoniae from Iraq to France. Antimicrob Agents Chemother 55(4):1821–1822. https://doi.org/10.1128/AAC.01761-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poirel L, Lagrutta E, Taylor P, Pham J, Nordmann P (2010) Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia Coli in Australia. Antimicrob Agents Chemother 54(11):4914–4916. https://doi.org/10.1128/AAC.00878-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Z, Wang Y, Tian L, Zhu X, Li L, Zhang B, Yan S, Sun Z (2015) First report in China of Enterobacteriaceae clinical isolates coharboring bla NDM-1 and bla IMP-4 drug resistance genes. Microb Drug Resist 21(2):167–170. https://doi.org/10.1089/mdr.2014.0087

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto T, Takano T, Iwao Y, Hishinuma A (2011) Emergence of NDM-1-positive capsulated Escherichia Coli with high resistance to serum killing in Japan. J Infect Chemother 17(3):435–439. https://doi.org/10.1007/s10156-011-0232-3

    Article  CAS  PubMed  Google Scholar 

  16. Kaase M, Nordmann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L (2011) NDM-2 carbapenemase in Acinetobacter Baumannii from Egypt. J Antimicrob Chemother 66(6):1260–1262. https://doi.org/10.1093/jac/dkr135

    Article  CAS  PubMed  Google Scholar 

  17. Zong Z, Zhang X (2013) blaNDM-1-carrying Acinetobacter Johnsonii detected in hospital sewage. J Antimicrob Chemother 68(5):1007–1010. https://doi.org/10.1093/jac/dks505

    Article  CAS  PubMed  Google Scholar 

  18. Isozumi R, Yoshimatsu K, Yamashiro T, Hasebe F, Nguyen BM, Ngo TC, Yasuda SP, Koma T, Shimizu K, Arikawa J (2012) blaNDM-1-positive Klebsiella Pneumoniae from environment, Vietnam. Emerging Infect Dis 18(8):1383–1384

    Article  Google Scholar 

  19. Luo Y, Yang F, Mathieu J, Mao D, Wang Q, Alvarez P (2014) Genes in municipal wastewater treatment plants in Northern China. Environ Sci Technol Lett 1(1):26–30. https://doi.org/10.1021/ez400152e

    Article  CAS  Google Scholar 

  20. Mokracka J, Koczura R, Kaznowski A (2012) Multiresistant Enterobacteriaceae with class 1 and class 2 integrons in a municipal wastewater treatment plant. Water Res 46(10):3353–3363. https://doi.org/10.1016/j.watres.2012.03.037

    Article  CAS  PubMed  Google Scholar 

  21. Marti E, Jofre J, Balcazar JL (2013) Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS ONE 8:e78906. https://doi.org/10.1371/journal.pone.0078906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel Erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53(12):5046–5054. https://doi.org/10.1128/AAC.00774-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan AU, Nordmann P (2012) NDM-1-producing Enterobacter cloacae and Klebsiella pneumoniae from diabetic foot ulcers in India. J Med Microbiol 61:454–456. https://doi.org/10.1099/jmm.0.039008-0

    Article  CAS  PubMed  Google Scholar 

  24. Ahammad ZS, Sreekrishnan TR, Hands CL, Knapp CW, Graham DW (2014) Increased waterborne blaNDM-1 resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges River. Environ Sci Technol 48(5):3014–3020. https://doi.org/10.1021/es405348h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rathinasabapathi P, Hiremath DS, Arunraj R, Parani M (2015) Molecular detection of New Delhi metallo-beta-lactamase-1 (NDM-1) positive bacteria from environmental and drinking water samples by loop mediated isothermal amplification of blaNDM-1. Indian J Microbiol 55(4):400–405. https://doi.org/10.1007/s12088-015-0540-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Devarajan N, Laffite A, Mulaji CK, Otamonga JP, Mpiana PT, Mubedi JI et al (2016) Occurrence of antibiotic resistance genes and bacterial markers in a tropical river receiving hospital and urban wastewaters. PLoS ONE 11(2):e0149211. https://doi.org/10.1371/journal.pone.0149211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parvez S, Khan AU (2017) Hospital sewage water—a reservoir for variants of new delhi metallo-β-lactamase (blaNDM) and ESBL-producing enterobacteriaceae. Int J Antimicrob Agents 51(1):82–88. https://doi.org/10.1016/j.ijantimicag.2017.08.032

    Article  CAS  PubMed  Google Scholar 

  28. Marathe NP, Pal C, Gaikwad SS, Jonsson V, Kristiansson E, Larsson DGJ (2017) Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Water Res 124:388–397. https://doi.org/10.1016/j.watres.2017.07.060

    Article  CAS  PubMed  Google Scholar 

  29. Lamba M, Ahammad ZS (2017) Sewage treatment effluents in Delhi: a key contributor of β-lactam resistant bacteria and genes to the environment. Chemosphere 188:249–256. https://doi.org/10.1016/j.chemosphere.2017.08.133

    Article  CAS  PubMed  Google Scholar 

  30. Lamba M, Gupta S, Shukla R, Graham DW, Sreekrishnan TR, Ahammad SZ (2018) Carbapenem resistance exposures via wastewaters across New Delhi. Environ Int 119:302–308. https://doi.org/10.1016/j.envint.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  31. Kalasseril SG, Krishnan R, Vattiringal RK, Paul R, Mathew P, Pillai D (2020) Detection of New Delhi metallo-β-lactamase 1 and cephalosporin resistance genes among carbapenem-resistant Enterobacteriaceae in water bodies adjacent to hospitals in India. Curr Microbiol 77(10):2886–2895. https://doi.org/10.1007/s00284-020-02107-y

    Article  CAS  PubMed  Google Scholar 

  32. Zhang C, Qiu S, Wang Y, Qi L, Hao R et al (2013) Higher Isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals in Beijing. PLoS ONE 8(6):e64857. https://doi.org/10.1371/journal.pone.0064857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo Y, Yang F, Mathieu J, Mao D, Wang Q, Alvarez PJJ (2014) Proliferation of multidrug-resistant New Delhi metallo-β-lactamase genes in municipal wastewater treatment plants in Northern China. Environ Sci Technol Lett 1(1):26–30. https://doi.org/10.1021/ez400152e

    Article  CAS  Google Scholar 

  34. Wang B, Sun D (2015) Detection of NDM-1 carbapenemase-producing Acinetobacter calcoaceticus and Acinetobacter junii in environmental samples from livestock farms. J Antimicrob Chemother 70(2):611–613. https://doi.org/10.1093/jac/dku405

    Article  CAS  PubMed  Google Scholar 

  35. Jia S, Shi P, Hu Q, Li B, Zhang T, Zhang XX (2015) Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination. Environ Sci Technol 49(20):12271–12279. https://doi.org/10.1021/acs.est.5b03521

    Article  CAS  PubMed  Google Scholar 

  36. Yang F, Mao D, Zhou H, Wang X, Luo Y (2016) Propagation of New Delhi metallo-β-lactamase genes (blaNDM-1) from a wastewater treatment plant to its receiving river. Environ Sci Technol Lett 3(4):138–143. https://doi.org/10.1021/acs.estlett.6b00036

    Article  CAS  Google Scholar 

  37. Stange C, Yin D, Xu T, Guo X, Schäfer C, Tiehm A (2018) Distribution of clinically relevant antibiotic resistance genes in Lake Tai. China Sci Total Environ 10(655):337–346. https://doi.org/10.1016/j.scitotenv.2018.11.211

    Article  CAS  Google Scholar 

  38. Hu Y, Feng Y, Qin J, Zhang X, Zong Z (2018) Acinetobacter chinensis, a novel Acinetobacter species, carrying bla NDM-1, recovered from hospital sewage. J Microbiol 57(5):350–355. https://doi.org/10.1007/s12275-019-8485-0

    Article  CAS  Google Scholar 

  39. Zou H, Berglund B, Xu H, Chi X, Zhao Q, Zhou Z, Xia H, Li X, Zheng B (2019) Genetic characterization and virulence of a carbapenem-resistant Raoultella ornithinolytica isolated from well water carrying a novel megaplasmid containing blaNDM-1. Environ Pollut 260:114041. https://doi.org/10.1016/j.envpol.2020.114041

    Article  CAS  Google Scholar 

  40. Khan H, Miao X, Liu M, Ahmad S, Bai X (2019) Behavior of last resort antibiotic resistance genes (mcr-1 and blaNDM-1) in a drinking water supply system and their possible acquisition by the mouse gut flora. Environ Pollut 259:113818. https://doi.org/10.1016/j.envpol.2019.113818

    Article  CAS  PubMed  Google Scholar 

  41. Khan H, Liu M, Kayani MUR, Ahmad S, Liang J, Bai X (2021) DNA phosphorothioate modification facilitates the dissemination of mcr-1 and blaNDM-1 in drinking water supply systems. Environ Pollut 268(PtA):115799. https://doi.org/10.1016/j.envpol.2020.115799

    Article  CAS  PubMed  Google Scholar 

  42. Wang K, Li P, Li J, Hu X et al (2020) An NDM-1-producing Acinetobacter towneri isolate from hospital sewage in China. Infect Drug Resist 13:1105–1110. https://doi.org/10.2147/IDR.S246697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Su S, Li C, Yang J, Xu Q et al (2020) Distribution of antibiotic resistance genes in three different natural water bodies-a lake, river and sea. Int J Environ Res Public Health 17(2):552. https://doi.org/10.3390/ijerph17020552

    Article  CAS  PubMed Central  Google Scholar 

  44. Isozumi R, Yoshimatsu K, Yamashiro T, Hasebe F et al (2012) blaNDM-1–positive Klebsiella pneumoniae from environment, Vietnam. Emerg Infect Dis 18(8):1383–1385. https://doi.org/10.3201/eid1808.111816

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shah TA, Zahra R (2014) Screening of environment water for the presence of blaNDM-1 gene containing microorganisms. J Coll Physicians Surg Pak 24(9):695–697

    PubMed  Google Scholar 

  46. Mantilla-Calderon D, Jumat MR, Wang T, Ganesan P, Al-Jassim N, Hong PY (2016) Isolation and characterization of NDM-positive Escherichia coli from municipal wastewater in Jeddah, Saudi Arabia. Antimicrob Agents Chemother 60:5223–5231. https://doi.org/10.1128/AAC.00236-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Islam MA, Islam M, Hasan R, Hossain MI, Nabi A, Rahman M et al (2014) Environmental spread of New Delhi metallo-β-lactamase-1-producing multidrug-resistant bacteria in Dhaka, Bangladesh. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00793-17

    Article  PubMed  Google Scholar 

  48. Sugawara Y, Akeda Y, Hagiya H, Sakamoto N, Takeuchi D et al (2019) Spreading patterns of NDM-producing Enterobacteriaceae in clinical and environmental settings in Yangon, Myanmar. Antimicrob Agents Chemother 63:e01924-e2018. https://doi.org/10.1128/AAC.01924-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suzuki Y, Nazareno PJ, Nakano R, Mondoy M, Nakano A, Bugayong MP et al (2020) Environmental presence and genetic characteristics of carbapenemase-producing Enterobacteriaceae from hospital sewage and river water in the Philippines. Appl Environ Microbiol 86(2):e01906-e1919. https://doi.org/10.1128/AEM.01906-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zurfluh K, Hächler H, Nüesch-Inderbinen M, Stephan R (2013) Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae isolates from rivers and lakes in Switzerland. Appl Environ Microbiol 79(9):3021–3026. https://doi.org/10.1128/AEM.00054-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Novovic K, Filipic B, Velijovic K, Begovic J, Mirkovic N, Jovcic B (2014) Environmental waters and blaNDM-1 in Belgrade, Serbia: endemicity questioned. Sci Total Environ 1(511):393–398. https://doi.org/10.1016/j.scitotenv.2014.12.072

    Article  CAS  Google Scholar 

  52. Mahon BM, Brehony C, McGrath E, Killeen J, Cormican M, Hickey P, Keane S, Hanahoe B, Dolan A, Morris D (2017) Indistinguishable NDM-producing Escherichia coli isolated from recreational waters, sewage, and a clinical specimen in Ireland, 2016 to 2017. Euro Surveill 22(15):30513. https://doi.org/10.2807/1560-7917.ES.2017.22.15.30513

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lekunberri I, Villagrasa M, Balcázar JL, Borrego CM (2017) Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. Sci Total Environ 601–602:206–209. https://doi.org/10.1016/j.scitotenv.2017.05.174

    Article  CAS  PubMed  Google Scholar 

  54. Subirats J, Royo E, Jl B, Borrego CM (2017) Real-time PCR assays for the detection and quantification of carbapenemase genes (bla KPC, bla NDM, and bla OXA-48) in environmental samples. Environ Sci Pollut Res Int 24(7):6710–6714. https://doi.org/10.1007/s11356-017-8426-6

    Article  CAS  PubMed  Google Scholar 

  55. Khan FA, Hellmark B, Ehricht R, Söderquist B, Jass J (2018) Related carbapenemase-producing Klebsiella isolates detected in both a hospital and associated aquatic environment Sweden. Eur J Clin Microbiol Infect Dis 37(12):2241–2251. https://doi.org/10.1007/s10096-018-3365-9

    Article  PubMed  Google Scholar 

  56. Proia L, Anzil A, Borrego C, Farre M, Llorca M, Sanchis J, Bogaerts P, Balcazar JL, Servais P (2018) Occurrence and persistence of carbapenemases genes in hospital and wastewater treatment plants and propagation in the receiving river. J Hazard Mater 358:33–43. https://doi.org/10.1016/j.jhazmat.2018.06.058

    Article  CAS  PubMed  Google Scholar 

  57. Stachurová T, Piková H, Bartas M, Semerád J, Svobodová K, Malachová K (2021) Beta-lactam resistance development during the treatment processes of municipal wastewater treatment plants. Chemosphere 280:130749. https://doi.org/10.1016/j.chemosphere.2021.130749

    Article  CAS  PubMed  Google Scholar 

  58. Fernando DM, Tun HM, Poole J, Patidar R, Li R, Mi R et al (2016) Detection of antibiotic resistance genes in source and drinking water samples from a first nations community in Canada. Appl Environ Microbiol 82:4767–4775. https://doi.org/10.1128/AEM.00798-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang A, Call DR, Besser TE et al (2019) β-lactam resistance genes in bacteriophage and bacterial DNA from wastewater, river water, and irrigation water in Washington State. Water Res 161:335–340. https://doi.org/10.1016/j.watres.2019.06.026

    Article  CAS  PubMed  Google Scholar 

  60. Eramo A, Medina WRM, Fahrenfeld NL (2020) Factors associated with elevated levels of antibiotic resistance genes in sewer sediments and wastewater. Environ Sci Water Res Technol 6:1697–1710. https://doi.org/10.1039/D0EW00230E

    Article  CAS  Google Scholar 

  61. Corrêa LL, Kraychete GB, Rezende AM, Campana EH, Lima-Morales D, Wink PL, Picão RC (2021) NDM-1-encoding plasmid in Acinetobacter chengduensis isolated from coastal water. Infect Genet Evol 3:104926. https://doi.org/10.1016/j.meegid.2021.104926

    Article  CAS  Google Scholar 

  62. Zenati K, Touati A, Bakour S, Sahli F, Rolain JM (2015) Characterization of NDM-1- and OXA-23-producing Acinetobacter baumannii isolates from inanimate surfaces in a hospital environment in Algeria. J Hosp Infect 92(1):19–26. https://doi.org/10.1016/j.jhin.2015.09.020

    Article  PubMed  Google Scholar 

  63. Djenadi K, Zhang L, Murray AK, Gaze WH (2018) Carbapenem resistance in bacteria isolated from soil and water environments in Algeria. J Glob Antimicrob Resist 15:262–267. https://doi.org/10.1016/j.jgar.2018.07.013

    Article  PubMed  Google Scholar 

  64. Nasri E, Subirats J, Sànchez-Melsió A, Mansour HB, Borrego CM, Balcázar JL (2017) Abundance of carbapenemase genes (bla KPC, bla NDM and bla OXA-48) in wastewater effluents from Tunisian hospitals. Environ Pollut 229:371–374. https://doi.org/10.1016/j.envpol.2017.05.095

    Article  CAS  PubMed  Google Scholar 

  65. Oyelade AA, Adelowo OO, Fagade OE (2018) blaNDM-1-producing Vibrio parahaemolyticus and V. vulnificus isolated from recreational beaches in Lagos, Nigeria. Environ Sci Pollut Res Int 25(33):33538–33547. https://doi.org/10.1007/s11356-018-3306-2

    Article  CAS  PubMed  Google Scholar 

  66. Terrier CL, Masseron A, Uwaezuoke NS, Edwin CP et al (2020) Wide spread of carbapenemase-producing bacterial isolates in a Nigerian environment. J Glob Antimicrob Resist 21:321–323. https://doi.org/10.1016/j.jgar.2019.10.014

    Article  PubMed  Google Scholar 

  67. Ebomah KE, Okoh AI (2020) Detection of carbapenem-resistance genes in Klebsiella species recovered from selected environmental niches in the Eastern Cape province. South Africa Antibiotics (Basel) 9(7):425. https://doi.org/10.3390/antibiotics9070425

    Article  CAS  Google Scholar 

  68. Laffite A, Al Salah DMM, Slaveykova VI, Otamonga JP, Poté J (2020) Impact of anthropogenic activities on the occurrence and distribution of toxic metals, extending-spectra β-lactamases and carbapenem resistance in sub-Saharan African urban rivers. Sci Total Environ 727:138129. https://doi.org/10.1016/j.scitotenv.2020.138129

    Article  CAS  PubMed  Google Scholar 

  69. Tan L, Li L, Ashbolt N, Wang X et al (2017) Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin. Sci Total Environ 621:1176–1184. https://doi.org/10.1016/j.scitotenv.2017.10.110

    Article  CAS  PubMed  Google Scholar 

  70. McCann CM, Christgen B, Roberts JA, Su JQ et al (2019) Understanding drivers of antibiotic resistance genes in high Arctic soil ecosystems. Environ Int 125:497–504. https://doi.org/10.1016/j.envint.2019.01.034

    Article  CAS  PubMed  Google Scholar 

  71. Spindler A, Otton LM, Fuentefria DB, Corcao G (2012) Beta-lactams resistance and presence of class 1 integron in Pseudomonas spp. isolated from untreated hospital effluents in Brazil. Antonie van Leeuwenhoek 102(1):73–81. https://doi.org/10.1007/s10482-012-9714-2

    Article  CAS  PubMed  Google Scholar 

  72. Devarajan N, Laffite A, Ngelikoto P, Elongo V, Prabakar K, Mubedi JI et al (2015) Hospital and urban effluent waters as a source of accumulation of toxic metals in the sediment receiving system of the Cauvery River, Tiruchirappalli, Tamil Nadu. India India Environ Sci Pollut Res 22:12941–12950. https://doi.org/10.1007/s11356-015-4457-z

    Article  CAS  Google Scholar 

  73. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8(4):251–259. https://doi.org/10.1038/nrmicro2312

    Article  CAS  PubMed  Google Scholar 

  74. Skariyachan S, Mahajanakatti AB, Grandhi NJ, Prasanna A, Sen B, Sharma N et al (2015) Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka. India Environ Monit Assess 187(5):279. https://doi.org/10.1007/s10661-015-4488-4

    Article  CAS  PubMed  Google Scholar 

  75. Auerbach EA, Seyfried EE, McMahon KD (2007) Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res 41:1143–1151. https://doi.org/10.1016/j.watres.2006.11.045

    Article  CAS  PubMed  Google Scholar 

  76. Yang S, Carlson K (2003) Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes. Water Res 37:4645–4656. https://doi.org/10.1016/S0043-1354(03)00399-3

    Article  CAS  PubMed  Google Scholar 

  77. Schwartz T, Kohnen W, Jansen B, Obst U (2003) Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43:325–335. https://doi.org/10.1111/j.1574-6941.2003.tb01073.x

    Article  CAS  PubMed  Google Scholar 

  78. Liu YF, Wang CH, Janapatla RP, Fu HM, Wu HM, Wu JJ (2007) Presence of plasmid pA15 correlates with prevalence of constitutive MLSB resistance in group A streptococcal isolate at a university hospital in southern Taiwan. J Antimicrobial Chemother 59:1167–1170. https://doi.org/10.1093/jac/dkm106

    Article  CAS  Google Scholar 

  79. Agersø Y, Sandvang D (2005) Class 1 integrons and tetracycline resistance genes in Alcaligenes, Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Appl Environ Microbiol 71:7941–7947. https://doi.org/10.1128/AEM.71.12.7941-7947.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Agersø Y, Petersen A (2007) The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand. J Antimicrob Chemother 59:23–27. https://doi.org/10.1093/jac/dkl419

    Article  PubMed  Google Scholar 

  81. Szczepanowski R, Krahn I, Linke B, Goesmann A, Pühler A, Schlüter A (2004) Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. Microbiology 150:3613–3630. https://doi.org/10.1099/mic.0.27317-0

    Article  CAS  PubMed  Google Scholar 

  82. Tennstedt T, Szczepanowski R, Krahn I, Pühler A, Schlüter A (2005) Sequence of the 68,869 bp IncP-1a plasmid pTB11 from a wastewater treatment plant reveals a highly conserved backbone, a Tn402-like integron and other transposable elements. Plasmid 53:218–238. https://doi.org/10.1016/j.plasmid.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  83. Chen J, Yu ZT, Michel FC Jr, Wittum T, Morrison M (2007) Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides lincosamides-streptogramin B in livestock manure and manure management systems. Appl Environ Microbiol 73:4407–4416. https://doi.org/10.1128/AEM.02799-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schlüter A, Szczepanowski R, Pühler A, Top EM (2007) Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provide evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 31:449–477. https://doi.org/10.1111/j.1574-6976.2007.00074.x

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, Geißen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151–1161. https://doi.org/10.1016/j.chemosphere.2008.07.086

    Article  CAS  PubMed  Google Scholar 

  86. Coleman BL, Salvadori MI, McGeer AJ et al (2012) The role of drinking water in the transmission of antimicrobial-resistant E. coli. Epidemiol Infect 140:633–642. https://doi.org/10.1017/S0950268811001038

    Article  CAS  PubMed  Google Scholar 

  87. Jacobs L, Chenia HY (2007) Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. Int J Food Microbiol 114:295–306. https://doi.org/10.1016/j.ijfoodmicro.2006.09.030

    Article  CAS  PubMed  Google Scholar 

  88. Rahman MH, Nonaka L, Tago R, Suzuki S (2008) Occurrence of two genotypes of tetracycline (T.C.) resistance gene tet(M) in the TC-resistant bacteria in marine sediments of Japan. Environ Sci Technol 42:5055–5061. https://doi.org/10.1021/es702986y

    Article  CAS  PubMed  Google Scholar 

  89. Mohapatra H, Mohapatra SS, Mantri CK, Colwell RR, Singh DV (2008) Vibrio cholerae non-O1, non-O139 strains isolated before 1992 from Varanasi, India are multiple drug resistant, contain intSXT, dfr18 and aadA5 genes. Environ Microbiol 10:866–873. https://doi.org/10.1111/j.1462-2920.2007.01502.x

    Article  CAS  PubMed  Google Scholar 

  90. Pruden A, Pei R, Storteboom H, Carlson CH (2006) Antibiotics resistance gene as emerging contaminants: studies in North Colorado. Environ Sci Technol 40(23):7445–7450. https://doi.org/10.1021/es060413l

    Article  CAS  PubMed  Google Scholar 

  91. Cummings DE, Archer KF, Arriola DJ et al (2011) Broad dissemination of plasmid-mediated quinolone resistance genes in sediments of two urban coastal wetlands. Environ Sci Technol 45(2):447–454. https://doi.org/10.1021/es1029206

    Article  CAS  PubMed  Google Scholar 

  92. Koksal F, Oguzkurt N, Samasti M, Altas K (2007) Prevalence and antimicrobial resistance patterns of Aeromonas strains isolated from drinking water samples in Istanbul, Turkey. Chemotherapy 53:30–35. https://doi.org/10.1159/000098248

    Article  CAS  PubMed  Google Scholar 

  93. Ram S, Vajpayee P, Shanker R (2008) Contamination of potable water distribution systems by multi-antimicrobial-resistant enterohemorrhagic Escherichia coli. Environ Health Perspect 116:448–452. https://doi.org/10.1289/ehp.10809

    Article  CAS  PubMed  Google Scholar 

  94. Rolain JM, Parola P, Cornaglia G (2010) New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect 16:1699–1701. https://doi.org/10.1111/j.1469-0691.2010.03385.x

    Article  CAS  PubMed  Google Scholar 

  95. Bogaerts P, Verroken A, Jans B, Denis O, Glupczynski Y (2010) Global spread of New Delhi metallo-beta-lactamase 1. Lancet Infect Dis 10:831–832

    Article  Google Scholar 

  96. Zhang T, Fang HHP (2006) Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl Microbiol Biotechnol 70:281–289. https://doi.org/10.1007/s00253-006-0333-6

    Article  CAS  PubMed  Google Scholar 

  97. Gilbride KA, Lee DY, Beaudette LA (2006) Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. J Microbiol Methods 66(1):1–20. https://doi.org/10.1016/j.mimet.2006.02.016

    Article  CAS  PubMed  Google Scholar 

  98. Walsh TR, Toleman MA (2011) The emergence of a pan-resistant gram-negative pathogens merits a rapid global political response. J Antimicrob Chemother 67:1–3. https://doi.org/10.1093/jac/dkr378

    Article  CAS  PubMed  Google Scholar 

  99. Goel N, Wattal C, Oberoi JK et al (2011) Trend analysis of antimicrobial consumption and development of resistance in non-fermenters in a tertiary care hospital in Delhi, India. J Antimicrob Chemother 66:1625–1630. https://doi.org/10.1093/jac/dkr167

    Article  CAS  PubMed  Google Scholar 

  100. Choffnes ER, Relman DA, Mack A, Rapporteurs (2010) Antibiotic resistance: implications for global health and novel intervention strategies. Workshop summary. Forum on microbial threats: Institute of medicine. The National Academies Press, Washington, p 496

    Google Scholar 

  101. O’Brien TF, Pla MP, Mayer KH et al (1985) Intercontinental spread of a new antibiotic resistance gene on an epidemic plasmid. Science 230:87–88. https://doi.org/10.1126/science.2994226

    Article  PubMed  Google Scholar 

Download references

Funding

The authors thank the University Grant Commission (UGC), India for providing financial assistance [UGC-Ref. No.: 24625/(NET-DEC. 2013)] for this study.

Author information

Authors and Affiliations

Authors

Contributions

RR postulated this research, drafted the manuscript, and participated in the revisions of it. ST supervised the draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shashidhar Thatikonda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial or personal interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Thatikonda, S. β-Lactam Resistance Gene NDM-1 in the Aquatic Environment: A Review. Curr Microbiol 78, 3634–3643 (2021). https://doi.org/10.1007/s00284-021-02630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02630-6

Navigation