Skip to main content
Log in

Preparation and characterization of bimetallic Pd–Zn nanoparticles on carbon for borohydride electrooxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Herein, Pd and a series of PdZn bimetallic nanoparticles supported on Vulcan XC-72 carbon were prepared by ultrasound-assisted NaBH4 impregnation-reduction method for the oxidation reaction of BH4 (BOR). The physical properties of the electrocatalysts were identified by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and inductively coupled plasma optical emission spectrometry techniques. The electrochemical properties were characterized by cyclic voltammetry, chronoamperometry and linear sweep voltammetry (LSV). The results were indicated uniformly dispersed PdZn nanoparticles on carbon with an average particle size of 5 nm. The number of electrons calculated from LSV data was found to be in the range of 3.0–3.5. Among all the prepared catalysts, PdZn-01/C exhibited the highest current density (1818 mA mgPd−1) and stability towards BOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oliveira RCP, Vasić M, Santos DMF, Babic B, Hercigonja R, Sequeira CAC, Sljukic B (2018) Performance assessment of a direct borohydride-peroxide fuel cell with Pd-impregnated faujasite X zeolite as anode electrocatalyst. Electrochim Acta 269:517–525

    Article  CAS  Google Scholar 

  2. Hosseini MG, Mahmoodi R (2017) Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: the effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/multiwalled carbon nanotubes on the cell performance. J Power Sources 370:87–97

    Article  CAS  Google Scholar 

  3. Akay RG, Ata KC, Kadıoğlu T, Çelik C (2018) Evaluation of SPEEK/PBI blend membranes for possible direct borohydride fuel cell (DBFC) application. Int J Hydrogen Energy 43:18702–18711

    Article  CAS  Google Scholar 

  4. Li S, Yang X, Zhu H, Wei X, Liu Y (2013) Ultrafine amorphous Co-W-B alloy as the anode catalyst for a direct borohydride fuel cell. Int J Hydrogen Energy 38:2884–2888

    Article  CAS  Google Scholar 

  5. Celik C, San FGB, Sarac HI (2010) Influences of sodium borohydride concentration on direct borohydride fuel cell performance. J Power Sources 195:2599–2603

    Article  CAS  Google Scholar 

  6. Boyaci San FG, Okur O, Iyigün Karadaǧ Ç, Isik-Gulsac I, Okumus E (2014) Evaluation of operating conditions on DBFC (direct borohydride fuel cell) performance with PtRu anode catalyst by response surface method. Energy 71:160–169

    Article  Google Scholar 

  7. Wang Z, Parrondo J, He C, Sankarasubramanian S, Ramani V (2019) Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells. Nat Energy 4:281–289

    Article  CAS  Google Scholar 

  8. Santos DMF, Sequeira CAC (2011) Sodium borohydride as a fuel for the future. Renew Sustain Energy Rev 15:3980–4001

    Article  CAS  Google Scholar 

  9. Ma J, Choudhury NA, Sahai Y (2010) A comprehensive review of direct borohydride fuel cells. Renew Sustain Energy Rev 14:183–199

    Article  CAS  Google Scholar 

  10. Guo S, Sun J, Zhang Z, Sheng A, Gao M, Wang Z, Zhao B, Ding W (2017) Study of the electrooxidation of borohydride on a directly formed CoB/Ni-foam electrode and its application in membraneless direct borohydride fuel cells. J Mater Chem A 5:15879–15890

    Article  CAS  Google Scholar 

  11. Duan D, Liu H, Wang Q, Wang Y, Liu S (2016) Kinetics of sodium borohydride direct oxidation on carbon supported Cu-Ag bimetallic nanocatalysts. Electrochim Acta 198:212–219

    Article  CAS  Google Scholar 

  12. Merino-Jiménez I, Ponce De León C, Shah AA, Walsh FC (2012) Developments in direct borohydride fuel cells and remaining challenges. J Power Sources 219:339–357

    Article  Google Scholar 

  13. Yi L, Liu L, Wang X, Yi W, He P, Wang X (2012) Carbon supported Pt-Co nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cell: electrocatalysis and fuel cell performance. J Power Sources 224:6–12

    Article  Google Scholar 

  14. Braesch G, Bonnefont A, Martin V, Savinova ER, Chatenet M (2018) Borohydride oxidation reaction mechanisms and poisoning effects on Au, Pt and Pd bulk electrodes: from model (low) to direct borohydride fuel cell operating (high) concentrations. Electrochim Acta 273:483–494

    Article  CAS  Google Scholar 

  15. Yi L, Wei W, Zhao C, Tian L, Liu J, Wang X (2015) Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell. J Power Sources 285:325–333

    Article  CAS  Google Scholar 

  16. Cao D, Gao Y, Wang G, Miao R, Liu Y (2010) A direct NaBH4–H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes. Int J Hydrogen Energy 35:807–813

    Article  CAS  Google Scholar 

  17. Yi L, Song Y, Wang X, Yi L, Hu J, Su G, Yi W, Yan H (2012) Carbon supported palladium hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells. J Power Sources 205:63–70

    Article  CAS  Google Scholar 

  18. Ma J, Sahai Y, Buchheit RG (2010) Direct borohydride fuel cell using Ni-based composite anodes. J Power Sources 195:4709–4713

    Article  CAS  Google Scholar 

  19. Behmenyar G, Akin AN (2014) Investigation of carbon supported Pd-Cu nanoparticles as anode catalysts for direct borohydride fuel cell. J Power Sources 249:239–246

    Article  CAS  Google Scholar 

  20. Duan D, You X, Liang J, Liu S, Wang Y (2015) Carbon supported Cu-Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells. Electrochim Acta 176:1126–1135

    Article  CAS  Google Scholar 

  21. Zhiani M, Mohammadi I (2016) Performance study of passive and active direct borohydride fuel cell employing a commercial Pd decorated Ni-Co/C anode catalyst. Fuel 166:517–525

    Article  CAS  Google Scholar 

  22. Santos DMF, Sequeira CAC (2010) Zinc anode for direct borohydride fuel cells. J Electrochem Soc 157:B13

    Article  CAS  Google Scholar 

  23. Hong J, Fang B, Wang C, Currie K (2006) Intrinsic borohydride fuel cell/battery hybrid power sources. J Power Sources 161:753–760

    Article  CAS  Google Scholar 

  24. Liu J, Yi L, Wang X, Zhao Q, Zhang Y, Gao J, Wei W (2015) Investigation of nanoporous carbon supported palladium-zinc nanocomposites as anode catalysts for direct borohydride-hydrogen peroxide fuel cell. Int J Hydrogen Energy 40:7301–7307

    Article  CAS  Google Scholar 

  25. He P, Wang X, Fu P, Wang H, Yi L (2011) The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. Int J Hydrogen Energy 36:8857–8863

    Article  CAS  Google Scholar 

  26. Yi L, Wei W, Zhao C, Yang C, Tian L, Liu J, Wang X (2015) Electrochemical oxidation of sodium borohydride on carbon supported Pt-Zn nanoparticle bimetallic catalyst and its implications to direct borohydride-hydrogen peroxide fuel cell. Electrochim Acta 158:209–218

    Article  CAS  Google Scholar 

  27. Matin MA, Kumar A, Bhosale RR, Saad MAHS, Almomania FA, Al-Marri MJ (2017) PdZn nanoparticle electrocatalysts synthesized by solution combustion for methanol oxidation reaction in an alkaline medium. RSC Adv 7:42709–42717

    Article  CAS  Google Scholar 

  28. Yi L, Yu B, Yi W, Zhou Y, Ding R, Wang X (2018) Carbon-supported bimetallic platinum-iron nanocatalysts: application in direct borohydride/hydrogen peroxide fuel cell. ACS Sustain Chem Eng 6:8142–8149

    Article  CAS  Google Scholar 

  29. Khan M, Bin YA, Chen M, Wei C, Wu X, Huang N, Qi Z, Li L (2015) Mixed-phase Pd-Pt bimetallic alloy on graphene oxide with high activity for electrocatalytic applications. J Power Sources 282:520–528

    Article  CAS  Google Scholar 

  30. Zhang K, Bin D, Yang B, Wang C, Ren F, Du Y (2015) Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation. Nanoscale 7:12445–12451

    Article  CAS  Google Scholar 

  31. Martins M, Šljukić B, Sequeira CAC, Metin O, Erdem M, Sener T, Santos DMF (2016) Biobased carbon-supported palladium electrocatalysts for borohydride fuel cells. Int J Hydrogen Energy 41:10914–10922

    Article  CAS  Google Scholar 

  32. Rodriguez JA, Kuhn M (1996) Interaction of zinc with transition-metal surfaces: electronic and chemical perturbations induced by bimetallic bonding. J Phys Chem 100:381–389

    Article  CAS  Google Scholar 

  33. Chatenet M, Molina-Concha MB, El-Kissi N, Parrour G, Diard JP (2009) Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions. Electrochim Acta 54:4426–4435

    Article  CAS  Google Scholar 

  34. Cheng H, Scott K (2006) Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode. Electrochim Acta 51:3429–3433

    Article  CAS  Google Scholar 

  35. Hansu TA, Caglar A, Sahin O, Kivrak H (2020) Hydrolysis and electrooxidation of sodium borohydride on novel CNT supported CoBi fuel cell catalyst. Mater Chem Phys 239:122031. https://doi.org/10.1016/j.matchemphys.2019.122031

    Article  CAS  Google Scholar 

  36. Liu J, Wang H, Wu C et al (2014) Preparation and characterization of nanoporous carbon-supported platinum as anode electrocatalyst for direct borohydride fuel cell. Int J Hydrogen Energy 39:6729–6736

    Article  CAS  Google Scholar 

  37. Hosseini MG, Abdolmaleki M (2013) Synthesis and characterization of porous nanostructured Ni/PdNi electrode towards electrooxidation of borohydride. Int J Hydrogen Energy 38:5449–5456

    Article  CAS  Google Scholar 

  38. Hosseini MG, Abdolmaleki M, Ashrafpoor S (2012) Electrocatalytic oxidation of sodium borohydride on a nanoporous Ni/Zn-Ni electrode. Chin J Catal 33:1817–1824

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) with Project Number 215M255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Doğan Özcan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan Özcan, M., Akay, R.G., Çelik, C. et al. Preparation and characterization of bimetallic Pd–Zn nanoparticles on carbon for borohydride electrooxidation. Reac Kinet Mech Cat 134, 163–177 (2021). https://doi.org/10.1007/s11144-021-02056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02056-y

Keywords

Navigation