Skip to main content
Log in

Highly efficient, recyclable cerium-phosphate solid acid catalysts for the synthesis of tetrahydrocarbazole derivatives by Borsche–Drechsel cyclization

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

A Correction to this article was published on 25 October 2021

This article has been updated

Abstract

In this work, a series of cerium phosphate catalysts with different cerium phosphate molar ratios have been synthesized. The prepared catalysts were characterized by means of FTIR, DTA, TGA, XRD, N2 adsorption–desorption and SEM. Also, the acidic centers of the prepared catalysts were abundantly studied and characterized in terms of type and strength using different techniques. The characterization tools used explained the variety of acidic centers in terms of type and strength due to the variation of cerium to phosphate molar ratio. Its worthy to mentioned that the highly acidic performance of the prepared catalysts was successfully applied in the synthesis of tetrahydrocarbazoles derivatives via Borsche–Drechsel cyclization reaction. The catalysts showed great catalytic activity in the selected reaction as high product yields were obtained using a very small amount of the catalysts under mild reaction conditions. The % yield and the reaction mechanism proves the role played by Brønsted acid sites of the catalyst in indorsing the reaction. The results also demonstrated a high ability of the catalysts to be reused ten times without a significant decrease in the catalytic activity. The synthesized tetrahydrocarbazole derivatives via heterogenous acid-catalyzed Borsche–Drechsel cyclization reaction can be considered as highly efficient and eco-friendly strategy towards many other carbazoles and open a new era in green chemistry as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Scheme 3

Similar content being viewed by others

Change history

References

  1. Liu Y, Guan Y, Li C et al (2006) Effect of ZnO additives and acid treatment on catalytic performance of Pt/WO3/ZrO2 for n-C7 hydroisomerization. J Catal 244:17–23

    Article  CAS  Google Scholar 

  2. Lyon CJ, Sarsani VR, Subramaniam B (2004) 1-Butene+ isobutane reactions on solid acid catalysts in dense CO2-based reaction media: experiments and modeling. Ind Eng Chem Res 43:4809–4814

    Article  CAS  Google Scholar 

  3. Ahmed AI, El-Hakam SA, Samra SE et al (2008) Structural characterization of sulfated zirconia and their catalytic activity in dehydration of ethanol. Colloids Surf A 317:62–70

    Article  CAS  Google Scholar 

  4. Arata K (1996) Preparation of superacids by metal oxides for reactions of butanes and pentanes. Appl Catal A 146:3–32

    Article  CAS  Google Scholar 

  5. Salama RS, Mannaa MA, Altass HM et al (2021) Palladium supported on mixed-metal–organic framework (Co–Mn-MOF-74) for efficient catalytic oxidation of CO. RSC Adv 11:4318–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. El-Hakam SA, Samra SE, El-Dafrawy SM et al (2018) Synthesis of sulfamic acid supported on Cr-MIL-101 as a heterogeneous acid catalyst and efficient adsorbent for methyl orange dye. RSC Adv 8:20517–20533. https://doi.org/10.1039/c8ra02941e

    Article  CAS  PubMed Central  Google Scholar 

  7. Salama RS, Hassan SM, Ahmed AI et al (2020) The role of PMA in enhancing the surface acidity and catalytic activity of a bimetallic Cr–Mg-MOF and its applications for synthesis of coumarin and dihydropyrimidinone derivatives. RSC Adv 10:21115–21128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salama RS, El-Sayed E-SM, El-Bahy SM, Awad FS (2021) Silver nanoparticles supported on UiO-66 (Zr): as an efficient and recyclable heterogeneous catalyst and efficient adsorbent for removal of Indigo Carmine. Colloids Surf A 626:127089

    Article  CAS  Google Scholar 

  9. El-Hakam SA, Samra SE, El-Dafrawy SM et al (2013) Surface acidity and catalytic activity of sulfated titania supported on mesoporous MCM-41. Int J Mod Chem 5:55–70

    CAS  Google Scholar 

  10. El-Hakam SA, Ibrahim AA, Elatwy LA et al (2021) Greener route for the removal of toxic heavy metals and synthesis of 14-aryl-14H dibenzo [a, j] xanthene using a novel and efficient Ag-Mg bimetallic MOF as a recyclable heterogeneous nanocatalyst. J Taiwan Inst Chem Eng

  11. Ibrahim AA, Salama RS, El-Hakam SA et al (2021) Synthesis of sulfated zirconium supported MCM-41 composite with high-rate adsorption of methylene blue and excellent heterogeneous catalyst. Colloids Surf A 616:126361

    Article  CAS  Google Scholar 

  12. Salama RS, El-Hakama SA, Samraa SE et al (2018) Cu-BDC as a novel and efficient catalyst for the synthesis of 3, 4-Dihydropyrimidin-2 (1H)-ones and Aryl-14H-dibenzo [a, j] Xanthenes under conventional heating. Int J Nano Mater Sci 7:31–42

    CAS  Google Scholar 

  13. Abd El Rahman SK, Hassan HMA, El-Shall MS (2012) Acid catalyzed organic transformations by heteropoly tungstophosphoric acid supported on MCM-41. Appl Catal A 411:77–86

    Google Scholar 

  14. Abd El Rahman SK, Hassan HMA, El-Shall MS (2014) Metal-organic frameworks with high tungstophosphoric acid loading as heterogeneous acid catalysts. Appl Catal A 487:110–118

    Article  CAS  Google Scholar 

  15. El-Hakam SA, El-Khouly AA, Khder AS (1999) Effect of thermal treatment on various characteristics of nickel/aluminum phosphate catalysts. Appl Catal A 185:247–257

    Article  CAS  Google Scholar 

  16. Ahmed AI, Samra SE, El-Hakam SA et al (2013) Characterization of 12-molybdophosphoric acid supported on mesoporous silica MCM-41 and its catalytic performance in the synthesis of hydroquinone diacetate. Appl Surf Sci 282:217–225

    Article  CAS  Google Scholar 

  17. Abd El Rahman SK (2008) Preparation, characterization and catalytic activity of tin oxide-supported 12-tungstophosphoric acid as a solid catalyst. Appl Catal A 343:109–116

    Article  CAS  Google Scholar 

  18. Khder AS, El-Sharkawy EA, El-Hakam SA, Ahmed AI (2008) Surface characterization and catalytic activity of sulfated tin oxide catalyst. Catal Commun 9:769–777

    Article  CAS  Google Scholar 

  19. Wang S, Guin JA (2000) Silica-supported sulfated zirconia: a new effective acid solid for etherification. Chem Commun 2499–2500

  20. Srivastava R, Iwasa N, Fujita S, Arai M (2008) Synthesis of nanocrystalline MFI-zeolites with intracrystal mesopores and their application in fine chemical synthesis involving large molecules. Chem Eur J 14:9507–9511

    Article  CAS  PubMed  Google Scholar 

  21. Ahmed AI, El-Hakam SA, Khder AS, El-Yazeed WSA (2013) Nanostructure sulfated tin oxide as an efficient catalyst for the preparation of 7-hydroxy-4-methyl coumarin by Pechmann condensation reaction. J Mol Catal A 366:99–108

    Article  CAS  Google Scholar 

  22. Abd El Rahman SK, Ahmed SA, Khairou KS, Altass HM (2018) Competent, selective and high yield of 7-hydroxy-4-methyl coumarin over sulfonated mesoporous silica as solid acid catalysts. J Porous Mater 25:1–13

    Article  CAS  Google Scholar 

  23. Hassan HMA, Betiha MA, Abd El Rahman SK et al (2016) Hafnium pentachloride ionic liquid for isomorphic and postsynthesis of HfKIT-6 mesoporous silica: catalytic performances of Pd/SO 4 2−/HfKIT-6. J Porous Mater 23:1339–1351

    Article  CAS  Google Scholar 

  24. Khder AS, Ahmed AI (2009) Selective nitration of phenol over nanosized tungsten oxide supported on sulfated SnO2 as a solid acid catalyst. Appl Catal A 354:153–160

    Article  CAS  Google Scholar 

  25. Altass HM, Abd El Rahman SK (2018) Preparation, characterization of highly active recyclable zirconium and tin tungstate catalysts and their application in Pechmann condensation reaction. React Kinet Mech Cat 125:227–243

    Article  CAS  Google Scholar 

  26. Abd El Rahman SK, Ahmed SA, Altass HM (2016) Mesoporous metal (IV) phosphates as high performance acid catalysts for the synthesis of photochromic bis-naphthopyran via Claisen rearrangement. React Kinet Mech Cat 117:745–759

    Article  CAS  Google Scholar 

  27. El-Hakam SA, El-Khouly AA, Khder AS (1999) Surface properties and catalytic activity of Ni/Al2O3–AlPO4 catalysts. Adsorp Sci Technol 17:417–430

    Article  CAS  Google Scholar 

  28. Li H, Zhang S, Zhou S, Cao X (2009) Bonding characteristics, thermal expansibility, and compressibility of RXO4 (R= Rare Earths, X= P, As) within monazite and zircon structures. Inorg Chem 48:4542–4548

    Article  CAS  PubMed  Google Scholar 

  29. Kijkowska R, Cholewka E, Duszak B (2003) X-ray diffraction and Ir-absorption characteristics of lanthanide orthophosphates obtained by crystallisation from phosphoric acid solution. J Mater Sci 38:223–228

    Article  CAS  Google Scholar 

  30. Qian L, Du W, Gong Q, Qian X (2009) Controlled synthesis of light rare earth phosphate nanowires via a simple solution route. Mater Chem Phys 114:479–484

    Article  CAS  Google Scholar 

  31. Rajesh K, Mukundan P, Pillai PK et al (2004) High-surface-area nanocrystalline cerium phosphate through aqueous Sol−Gel route. Chem Mater 16:2700–2705

    Article  CAS  Google Scholar 

  32. Kang J, Byun S, Nam S et al (2014) Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts. Int J Hydrogen Energy 39:10921–10926

    Article  CAS  Google Scholar 

  33. Srilakshmi C, Ramesh K, Nagaraju P et al (2006) Studies on preparation, characterization and ammoxidation functionality of zirconium phosphate-supported V 2 O 5 catalysts. Catal Lett 106:115–122

    Article  CAS  Google Scholar 

  34. Hattori T, Ishiguro A, Murakami Y (1978) Acidity of crystalline zirconium phosphate. J Inorg Nucl Chem 40:1107–1111

    Article  CAS  Google Scholar 

  35. Spielbauer D, Mekhemer GAH, Riemer T et al (1997) Structure and acidic properties of phosphate-modified zirconia. J Phys Chem B 101:4681–4688

    Article  CAS  Google Scholar 

  36. Drechsel E (1888) Ueber Elektrolyse des Phenols mit Wechselströmen. J für Prakt Chemie 38:65–74

    Article  Google Scholar 

  37. Borsche W (1908) Ueber Tetra-und Hexahydrocarbazolverbindungen und eine neue Carbazolsynthese. (Mitbearbeitet von. A. Witte und W. Bothe.). Justus Liebigs Ann Chem 359:49–80

    Article  CAS  Google Scholar 

  38. Ackermann L, Born R, Álvarez-Bercedo P (2007) Ruthenium (IV) alkylidenes as precatalysts for direct arylations of alkenes with aryl chlorides and an application to sequential catalysis. Angew Chem Int Ed 46:6364–6367

    Article  CAS  Google Scholar 

  39. Shou WG, Li J, Guo T et al (2009) Ruthenium-catalyzed intramolecular amination reactions of aryl-and vinylazides. Organometallics 28:6847–6854

    Article  CAS  Google Scholar 

  40. Kajiyama D, Inoue K, Ishikawa Y, Nishiyama S (2010) A synthetic approach to carbazoles using electrochemically generated hypervalent iodine oxidant. Tetrahedron 66:9779–9784

    Article  CAS  Google Scholar 

  41. Jordan-Hore JA, Johansson CCC, Gulias M et al (2008) Oxidative Pd (II)-catalyzed C−H bond amination to carbazole at ambient temperature. J Am Chem Soc 130:16184–16186

    Article  CAS  PubMed  Google Scholar 

  42. Humne V, Dangat Y, Vanka K, Lokhande P (2014) Iodine-catalyzed aromatization of tetrahydrocarbazoles and its utility in the synthesis of glycozoline and murrayafoline A: a combined experimental and computational investigation. Org Biomol Chem 12:4832–4836

    Article  CAS  PubMed  Google Scholar 

  43. Talukdar R (2019) BF 3· OEt 2 catalyzed base-free regiospecific ring opening of N-activated azetidines with (E)-1-arylidene-2-arylhydrazines. J Iran Chem Soc 16:127–136

    Article  CAS  Google Scholar 

  44. Haag BA, Zhang Z, Li J, Knochel P (2010) Fischer indole synthesis with organozinc reagents. Angew Chem Int Ed 49:9513–9516

    Article  CAS  Google Scholar 

  45. Park I-K, Suh S-E, Lim B-Y, Cho C-G (2009) Aryl hydrazide beyond as surrogate of aryl hydrazine in the Fischer indolization: the synthesis of N-Cbz-indoles, N-Cbz-carbazoles, and N, N′-Bis-Cbz-pyrrolo [2, 3-f] indoles. Org Lett 11:5454–5456

    Article  CAS  PubMed  Google Scholar 

  46. El-Dafrawy SM, Salama RS, El-Hakam SA, Samra SE (2019) Bimetal-organic frameworks (Cux-Cr100-x–MOF) as a stable and efficient catalyst for synthesis of 3, 4-dihydropyrimidin-2-one and 14-phenyl-14H-dibenzo [a, j] xanthene. J Mater Res Technol

  47. de Lima JF, Serra OA (2013) Cerium phosphate nanoparticles with low photocatalytic activity for UV light absorption application in photoprotection. Dye Pigment 97:291–296

    Article  CAS  Google Scholar 

  48. Vinothkumar G, Lalitha AI, Suresh Babu K (2018) Cerium phosphate-cerium oxide heterogeneous composite nanozymes with enhanced peroxidase-like biomimetic activity for glucose and hydrogen peroxide sensing. Inorg Chem 58:349–358

    Article  PubMed  CAS  Google Scholar 

  49. Mannaa A, Altass HM, Salama RS (2021) MCM-41 grafted with citric acid: The role of carboxylic groups in enhancing the synthesis of xanthenes and removal of heavy metal ions. Environ Nanotechnol Monit Manag 15:100410. https://doi.org/10.1016/j.enmm.2020.100410

    Article  Google Scholar 

  50. Sinhamahapatra A, Sutradhar N, Roy B et al (2010) Mesoporous zirconium phosphate catalyzed reactions: synthesis of industrially important chemicals in solvent-free conditions. Appl Catal A 385:22–30

    Article  CAS  Google Scholar 

  51. Sinhamahapatra A, Sutradhar N, Roy B et al (2011) Microwave assisted synthesis of fine chemicals in solvent-free conditions over mesoporous zirconium phosphate. Appl Catal B 103:378–387

    Article  CAS  Google Scholar 

  52. Lucas S, Champion E, Bregiroux D et al (2004) Rare earth phosphate powders REPO4· NH2O (Re= La, Ce or Y)—Part i. Synthesis and characterization. J Solid State Chem 177:1302–1311

    Article  CAS  Google Scholar 

  53. Boakye EE, Hay RS, Mogilevsky P, Douglas LM (2001) Monazite coatings on fibers: II, coating without strength degradation. J Am Ceram Soc 84:2793–2801

    Article  CAS  Google Scholar 

  54. Verma S, Bamzai KK (2014) Preparation of cerium orthophosphate nanosphere by coprecipitation route and its structural, thermal, optical, and electrical characterization. J Nanoparticles

  55. Hanna AA, Mousa SM, Elkomy GM, Sherief MA (2010) Synthesis and microstructure studies of nano-sized cerium phosphates. Eur J Chem 1:211–215

    Article  CAS  Google Scholar 

  56. Liu W, Feng L, Zhang C et al (2013) A facile hydrothermal synthesis of 3D flowerlike CeO2 via a cerium oxalate precursor. J Mater Chem A 1:6942–6948

    Article  CAS  Google Scholar 

  57. Asuvathraman R, Gnanasekar KI, Clinsha PC et al (2015) Investigations on the charge compensation on Ca and U substitution in CePO4 by using XPS, XRD and Raman spectroscopy. Ceram Int 41:3731–3739

    Article  CAS  Google Scholar 

  58. Yang F, Liu Q, Bai X, Du Y (2011) Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst. Bioresour Technol 102:3424–3429

    Article  CAS  PubMed  Google Scholar 

  59. Kapoor MP, Inagaki S, Yoshida H (2005) Novel zirconium− titanium phosphates mesoporous materials for hydrogen production by photoinduced water splitting. J Phys Chem B 109:9231–9238

    Article  CAS  PubMed  Google Scholar 

  60. Zhang H, Zhou Z, Yao Z et al (2009) Efficient synthesis of pyrimidinone derivatives by ytterbium chloride catalyzed Biginelli-type reaction under solvent-free conditions. Tetrahedron Lett 50:1622–1624

    Article  CAS  Google Scholar 

  61. Murata H, Ishitani H, Iwamoto M (2010) Synthesis of Biginelli dihydropyrimidinone derivatives with various substituents on aluminium-planted mesoporous silica catalyst. Org Biomol Chem 8:1202–1211

    Article  CAS  PubMed  Google Scholar 

  62. Oskooie HA, Heravi MM, Karimi N, Monjezy MH (2011) FeCl3 immobilized in Al-MCM 41: an efficient catalyst system for the Biginelli reaction. Synth Commun 41:826–831

    Article  CAS  Google Scholar 

  63. Kappe CO (2000) Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc Chem Res 33:879–888

    Article  CAS  PubMed  Google Scholar 

  64. Akhaja TN, Raval JP (2011) 1, 3-Dihydro-2H-indol-2-ones derivatives: Design, synthesis, in vitro antibacterial, antifungal and antitubercular study. Eur J Med Chem 46:5573–5579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly indebted to the Deanship of the Scientific Research (DSR), Umm Al-Qura University for the financial support through the Project Number 19-SCI-1-01-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelrahman S. Khder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altass, H.M., Khder, A.S., Ahmed, S.A. et al. Highly efficient, recyclable cerium-phosphate solid acid catalysts for the synthesis of tetrahydrocarbazole derivatives by Borsche–Drechsel cyclization. Reac Kinet Mech Cat 134, 143–161 (2021). https://doi.org/10.1007/s11144-021-02050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02050-4

Keywords

Navigation