Skip to main content
Log in

Non-invasive imaging through dynamic scattering layers via speckle correlations

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

As an object is passing through a static scattering medium, a speckle is formed. We can reconstruct the image from the speckle, based on the principle of optical memory effect. However, when the object passes through a dynamic scattering medium, such as fog, the reconstructed image quality will be degraded even blurred. In this paper, we want to investigate the reconstructed image as the object passes through the dynamic scattering medium, which is simulated by a rotating ground glass. We focus on studying the influence of both the acquisition time of the CCD and the angular velocity of the rotating ground glass on the fidelity of the reconstructed image. The experimental results show that appropriately reducing the acquisition time of the CCD is beneficial to reconstruct image from the single speckle in the dynamic scattering imaging. The proposed results may have applications in imaging through fog and biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yaqoob, Z., Psaltis, D., Feld, M.S., Yang, C.: Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008)

    Article  ADS  Google Scholar 

  2. Gibson, A.P., Hebden, J.C., Arridge, S.R.: Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005)

    Article  ADS  Google Scholar 

  3. Vellekoop, I.M., Mosk, A.P.: Phase control algorithms for focusing light through turbid medium. Opt. Commun. 281, 3071–3080 (2008)

    Article  ADS  Google Scholar 

  4. He, H.X., Guan, Y.F., Zhou, J.Y.: Image restoration through thin turbid layers by correlation with a known object. Opt. Express 21, 12539–12545 (2013)

    Article  ADS  Google Scholar 

  5. Katz, O., Small, E., Guan, Y., Silberberg, Y.: Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers. Optica 1, 170–174 (2014)

    Article  ADS  Google Scholar 

  6. Popoff, S.M., Lerosey, G., Carminati, R., Fink, M., Boccara, A.C., Gigan, S.: Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010)

    Article  ADS  Google Scholar 

  7. Drémeau, A., Liutkus, A., Martina, D., Katz, O., Schülke, C., Krzakala, F., Gigan, S., Daudet, L.: Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23, 11898–11911 (2015)

    Article  ADS  Google Scholar 

  8. Fan, W.R., Chen, Z.Y., Chen, L., Wu, L.Q., Ji, X.X., Pu, J.X.: Polarization transmission matrix for completely polarization control of focal spots in speckle field of multimode fiber. IEEE J. Sel. Top. Quan. Elec. 26, 4400405 (2020)

    Google Scholar 

  9. Singh, A.K., Naik, D.N., Pedrini, G., Takeda, M., Osten, W.: Looking through a diffuser and around an opaque surface: a holographic approach. Opt. Express 22, 7694–7701 (2014)

    Article  ADS  Google Scholar 

  10. Chen, L., Singh, R.K., Chen, Z.Y., Pu, J.X.: Phase shifting digital holography with the Hanbury Brown-Twiss approach. Opt. Lett. 45, 212–215 (2020)

    Article  ADS  Google Scholar 

  11. Wu, P.F., Liang, Z., Zhao, X., Su, L., Song, L.P.: Lensless wide-field single-shot imaging through turbid media based on object-modulated speckles. Appl. Opt. 56, 3335–3341 (2017)

    Article  ADS  Google Scholar 

  12. Das, B., Bisht, N.S., Vinu, R.V., Singh, R.K.: Lensless complex amplitude image retrieval through a visually opaque scattering medium. Appl. Opt. 56, 4591–4597 (2017)

    Article  ADS  Google Scholar 

  13. Gong, W.L., Han, S.S.: Correlated imaging in scattering media. Opt. Lett. 36, 394–396 (2011)

    Article  ADS  Google Scholar 

  14. Ferri, F., Magatti, D., Gatti, A., Bache, M., Brambilla, E., Lugiato, L.A.: High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94, 183602 (2005)

    Article  ADS  Google Scholar 

  15. Chen, L., Chen, Z.Y., Singh, R.K., Pu, J.X.: Imaging of polarimetric-phase object through scattering medium by phase shifting. Opt. Express 28, 8145–8155 (2020)

    Article  ADS  Google Scholar 

  16. Dror, I., Sandrov, A., Kopeika, N.S.: Experimental investigation of the influence of the relative position of the scattering layer on image quality: the shower curtain effect. Appl. Opt. 37, 6495–6499 (1998)

    Article  ADS  Google Scholar 

  17. Edrei, E., Scarcelli, G.: Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect. Optica 3, 71–74 (2016)

    Article  ADS  Google Scholar 

  18. Tajahuerce, E., Durán, V., Clemente, P., Irles, E., Soldevila, F., Andrés, P., Lancis, J.: Image transmission through dynamic scattering media by single-pixel photodetection. Opt. Express 22, 16945–16955 (2014)

    Article  ADS  Google Scholar 

  19. Wang, D., Zhou, E.H., Brake, J., Ruan, H., Jang, M., Yang, C.: Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica 2, 728–735 (2015)

    Article  ADS  Google Scholar 

  20. Hemphill, A.S., Shen, Y., Liu, Y., Wang, L.V.: High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. Phys. Rev. Lett. 111, 221109 (2017)

    Google Scholar 

  21. Zhuang, J.Y., Chen, Q., He, W.J., Mao, T.Y.: Imaging through dynamic scattering media with compressed sensing. Acta Phys. Sin. 65, 040501 (2016)

    Google Scholar 

  22. Sun, Y.W., Shi, J.H., Sun, L., Fan, J.P., Zeng, G.H.: Image reconstruction through dynamic scattering media based on deep learning. Opt. Express 27, 16032–16046 (2019)

    Article  ADS  Google Scholar 

  23. Baptiste, B., Kelly, J., Lisa, B., Laurent, B., Sylvain, G.: Enhanced stability of the focus obtained by wavefront optimization in dynamical scattering media. Optica 6, 1554–1561 (2019)

    Article  ADS  Google Scholar 

  24. Kanaev, A.V., Watnik, A.T., Gardner, D.F., Metzler, C., Judd, K.P., Lebow, P., Novak, K.M., Lindle, J.R.: Imaging through extreme scattering in extended dynamic media. Opt. Lett. 43, 3088–3091 (2018)

    Article  ADS  Google Scholar 

  25. Bertolotti, J., Putten, E.G., Blum, C., Lagendijk, A., Vos, W.L., Mosk, A.P.: Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012)

    Article  ADS  Google Scholar 

  26. Katz, O., Heidmann, P., Fink, M., Gigan, S.: Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8, 784–790 (2014)

    Article  ADS  Google Scholar 

  27. Li, L., Li, Q., Sun, S., Lin, H.Z., Liu, W.T., Chen, P.X.: Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function. Opt. Lett. 43, 1670–1673 (2018)

    Article  ADS  Google Scholar 

  28. Wu, T.F., Katz, O., Shao, X.P., Gigan, S.: Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis. Opt. Lett. 41, 5003–5006 (2016)

    Article  ADS  Google Scholar 

  29. Berto, P., Rigneault, H., Guillon, M.: Wavefront sensing with a thin diffuser. Opt. Lett. 42, 5117–5120 (2017)

    Article  ADS  Google Scholar 

  30. He, H.X., Xie, X.S., Liu, Y.K., Liang, H.W., Zhou, J.Y.: Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method. J. Innovat. Opt. Health Sci. 12, 1930005 (2019)

    Article  Google Scholar 

  31. Apostol, A., Dogariu, A.: Spatial correlations in the near field of random media. Phys. Rev. Lett. 91, 093901 (2003)

    Article  ADS  Google Scholar 

  32. Porat, A., Andresen, E.R., Rigneault, H., Oron, D., Gigan, S., Katz, O.: Widefield lensless imaging through a fiber bundle via speckle correlations. Opt. Express 24, 16835–16855 (2016)

    Article  ADS  Google Scholar 

  33. Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  34. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  ADS  Google Scholar 

  35. Fienup, J.R., Wackerman, C.C.: Phase-retrieval stagnation problems and solutions. J. Opt. Soc. Am. A 3, 1897–1907 (1986)

    Article  ADS  Google Scholar 

  36. Singh, R.K., Vinu, V.R., Sharma, M.A.: Recovery of complex valued objects from two-point intensity correlation measurement. Appl. Phys. Lett. 104, 111108 (2014)

    Article  ADS  Google Scholar 

  37. Hofer, M., Soeller, C., Brasselet, S., Bertolotti, J.: Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations. Opt. Express 26, 9866–9881 (2018)

    Article  ADS  Google Scholar 

  38. Li, H.J., Wu, T.F., Liu, J.T., Gong, C.M., Shao, X.P.: Simulation and experimental verification for imaging of gray-scale objects through scattering layers. Appl. Opt. 55, 9731–9737 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (NSFC) (11674111, 61575070); Fujian Province Science Funds for Distinguished Young Scholar (2018J06017); Fundamental Research Funds for the Central Universities (ZQN-PY209); subsidized Project for Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixiong Pu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Liu, Y., Lin, H. et al. Non-invasive imaging through dynamic scattering layers via speckle correlations. Opt Rev 28, 557–563 (2021). https://doi.org/10.1007/s10043-021-00691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00691-3

Keyword

Navigation