Skip to main content
Log in

The Role of Endogenous Retroviruses in the Domestication Process

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Endogenous retroviruses (ERVs) play an important role in the expression regulation of many animal and human genes and are involved in the processes of transcriptional and posttranscriptional editing. ERVs retain a certain genetic similarity to the exogenous generic virus. ERV research helps to determine the age and rate of evolution of exogenous viruses that are contagious to animals and humans. It is hypothesized that retroviruses arose before the appearance of vertebrates. This asynchrony suggests a significant contribution of retroviruses to the evolutionary development of organisms. ERVs have no species boundaries due to horizontal transfer; however, the movement of retrotransposons in the genome of animals can lead to cytogenetic defects and have a negative effect on the fitness of organisms. One striking example of horizontal transfer is the LINE 1 retrotransposon, which was found in 559 species, including animals, plants, and fungi. This confirms the assumption about the time of the emergence of retroviruses. Retrotransposons, which participate in the processes of transposition and recombination, cause changes in DNA nucleotide sequences. This leads to mutational processes in genes, in particular, those responsible for the development of neurons in the brain and nervous system, i.e., retrotransposons may be responsible for domestication syndrome. The infection of germ cells with retroviruses gradually led to their establishment of reproductive functions in mammals. These functions include the fusion of trophoblasts in the placenta. ERV genes are incorporated into the genome via viral infections or retrotransposition. The review systematizes and summarizes the knowledge of the evolution and transfer of ERVs in the body and their functions in the genome and describes the main and most common ERVs, as well as their molecular structure and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Aiewsakun, P. and Katzourakis, A., Endogenous viruses: connecting recent and ancient viral evolution, Virology, 2015, vols. 479–480, pp. 26–37.

    Article  PubMed  CAS  Google Scholar 

  2. Bhiwgade, D.A., Singh, A.B., Manekar, A.P., and Menon, S.N., Ultrastructural development of chorioallantoic placenta in the Indian Miniopterus bat, Miniopterus schreibersii fuliginosus (Hodgson), Acta Anat., 1992, vol. 145, no. 3, pp. 248–264.

    Article  CAS  PubMed  Google Scholar 

  3. Bischof, P. and Irminger-Finger, I., The human cytotrophoblastic cell, a mononuclear chameleon, Int. J. Biochem. Cell Biol., 2005, vol. 37, pp. 1–16.

    Article  CAS  PubMed  Google Scholar 

  4. Blaise, S., De Parseval, N., Bénit, L., and Heidmann, T., Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 22, pp. 13013–13018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blaise, S., De Parseval, N., and Heidmann, T., Functional characterization of two newly identified Human Endogenous Retrovirus coding envelope genes, Retrovirology, 2005, vol. 2, no. 19.

  6. Boeke, J.D. and Stoye, J.P., Retrotransposons, endogenous retroviruses and the evolution of retroelements, in Retroviruses, Coffin, J.M., Hughes, S.H., and Varmus, H.E., Eds., Plainview, NY: Cold Spring Harbor Lab. Press, 1997, pp. 343–436.

    Google Scholar 

  7. Bolisetty, M., Blomberg, J., Benachenhou, F., et al., Unexpected diversity and expression of avian endogenous retroviruses, mBio, 2012, vol. 3, no. 5, p. e00344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown, K., Emes, R.D., and Tarlinton, R.E., Multiple groups of endogenous epsilon-like retroviruses conserved across primates, J. Virol., 2014, vol. 88, pp. 12464–12471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Carneiro, M., Rubin, C., Di Palma, F., et al., Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication, Science, 2014, vol. 345, pp. 1074–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carter, A.M., Evolution of placental structure and function in ruminants, in Reproduction in Domestic Ruminants VIII, Juengel, J.L., Miyamoto, A., Price, C., Reynolds, L.P., Smith, M.F., and Webb, R., Eds., Leicestershire: Context, 2014, pp. 387–398.

    Google Scholar 

  11. Chinwalla, A.T., Cook, L.L., Delehaunty, K.D., et al., Initial sequencing and comparative analysis of the mouse genome, Nature, 2002, vol. 429, pp. 520–562.

    Google Scholar 

  12. Chopra, H.C. and Mason, M.M., A new virus in a spontaneous mammary tumor of a rhesus monkey, Cancer Res., 1970, vol. 30, no. 8, pp. 2081–2086.

    CAS  PubMed  Google Scholar 

  13. Cornelis, G., Heidmann, O., Degrelle, S.A., et al., Captured retroviral envelope syncytin gene associated with the unique placental structure of higher ruminants, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 9, pp. E828–E837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Parseval, N., Lazar, V., Casella, J.F., et al., Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins, J. Virol., 2003, vol. 77, no. 19, pp. 10414–10422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dewannieux, M. and Heidmann, T., Endogenous retroviruses: acquisition, amplification and taming of genome invaders, Curr. Opin. Virol., 2013, vol. 3, pp. 646–656.

    Article  CAS  PubMed  Google Scholar 

  16. Dupressoir, A., Marceau, G., Vernochet, C., et al., Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 3, pp. 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dupressoir, A., Lavialle, C., and Heidmann, T., From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation, Placenta, 2012, vol. 33, no. 9, pp. 663–671.

    Article  CAS  PubMed  Google Scholar 

  18. Enders, A.C. and Carter, A.M., What can comparative studies of placental structure tell us? Placenta, 2004, vol. 25, pp. 3–9.

    Article  CAS  Google Scholar 

  19. Enders, A.C., Blankenship, T.N., Conley, A.J., and Jones, C.J., Structure of the midterm placenta of the spotted hyena, Crocuta crocuta, with emphasis on the diverse hemophagous regions, Cells Tissues Organs, 2006, vol. 183, pp. 141–155.

    Article  PubMed  Google Scholar 

  20. Feschotte, C. and Gilbert, C., Endogenous viruses: insights into viral evolution and impact on host biology, Nat. Rev. Genet., 2012, vol. 13, no. 4, pp. 283–296.

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Etxebarria, K., Sistiaga-Poveda, M., and Jugo, B.M., Endogenous retroviruses in domestic animals, Curr. Genome, 2014, vol. 15, no. 4, pp. 256–265.

    Article  CAS  Google Scholar 

  22. Gilbert, C. and Feschotte, C., Genomic fossils calibrate the long-term evolution of hepadnaviruses, PLoS Biol., 2010, vol. 8, no. 9, p. e1000495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gilbert, S.G., Developmental Biology, Sunderland, MA: Sinauer Assoc., 2000, 6th ed.

    Google Scholar 

  24. Glazko, V.I., Glazko, T.T., Zybaylov, B.L., and Glazko, G.V., Domestication and mobile genetic elements, Holocene, 2019, vol. 29, no. 3, pp. 518–522.

    Article  Google Scholar 

  25. Hanada, K., Suzuki, Y., and Gojobori, T., A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes, Mol. Biol. Evol., 2004, vol. 21, pp. 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  26. Hayward, A., Grabherr, M., and Jern, P., Broad-scale phylogenomics provides insights into retrovirus–host evolution, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 50, pp. 20146–20151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hayward, A., Cornwallis, C.K., and Jern, P., Pan-vertebrate comparative genomics unmasks retrovirus macroevolution, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 2, pp. 464–469.

    Article  CAS  PubMed  Google Scholar 

  28. Hedges, S.B., Marin, J., Suleski, M., et al., Tree of life reveals clock-like speciation and diversification, Mol. Biol. Evol., 2015, vol. 32, no. 4, pp. 835–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heidmann, O., Vernochet, C., Dupressoir, A., and Heidmann, T., Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new “syncytin” in a third order of mammals, Retrovirology, 2009, vol. 6, p. 107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Holmes, E.C., The phylogeography of human viruses, Mol. Ecol., 2004, vol. 13, pp. 745–756.

    Article  PubMed  Google Scholar 

  31. Holmes, E.C., Evolutionary history and phylogeography of human viruses, Ann. Rev. Microbiol., 2008, vol. 62, pp. 307–328.

    Article  CAS  Google Scholar 

  32. Huebner, R.J. and Todaro, G.J., Oncogenes of RNA tumor viruses as determinants of cancer, Proc. Natl. Acad. Sci. U.S.A., 1969, vol. 64, no. 3, pp. 1087–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Imakawa, K., Nakagawa, S., and Miyazawa, T., Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution, Genes Cells, 2015, vol. 20, no. 10, pp. 771–788.

    Article  CAS  PubMed  Google Scholar 

  34. Jenkins, G.M., Rambaut, A., Pybus, O.G., and Holmes, E.C., Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis, J. Mol. Evol., 2002, vol. 54, pp. 156–165.

    Article  CAS  PubMed  Google Scholar 

  35. Jern, P. and Coffin, J.M., Effects of retroviruses on host genome function, Ann. Rev. Genet., 2008, vol. 42, pp. 709–732.

    Article  CAS  PubMed  Google Scholar 

  36. Kalter, S.S., Helmke, R.J., Panigel, M., et al., Observations of apparent C-type particles in baboon (Papio cynocephalus) placentas, Science, 1973, vol. 179, no. 4080, pp. 1332–1333.

    Article  CAS  PubMed  Google Scholar 

  37. Katzourakis, A., Tristem, M., Pybus, O.G., and Gifford, R.J., Discovery and analysis of the first endogenous lentivirus, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 15, pp. 6261–6265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keckesova, Z., Ylinenc, L.M.J., Towers, G.J., et al., Identification of a RELIK orthologue in the European hare (Lepus europaeus) reveals a minimum age of 12 million years for the lagomorph lentiviruses, Virology, 2009, vol. 384, no. 1, pp. 7–11.

    Article  CAS  PubMed  Google Scholar 

  39. Kewalramani, V.N., Panganiban, A.T., and Emerman, M., Spleen necrosis virus, an avian immunosuppressive retrovirus, shares a receptor with the type D simian retroviruses, J. Virol., 1992, vol. 66, no. 5, pp. 3026–3031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klement, V. and McAllister, R.M., Syncytial cytopathic effect in KB cells of a C-type RNA virus isolated from human rhabdomyosarcoma, Virology, 1972, vol. 50, no. 1, pp. 305–308.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar, S. and Subramanian, S., Mutation rates in mammalian genomes, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 803–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lander, E.S., Linton, L.M., Birren, B., et al., Initial sequencing and analysis of the human genome, Nature, 2001, vol. 409, pp. 860–921.

    Article  CAS  PubMed  Google Scholar 

  43. Lavialle, C., Cornelis, G., Dupressoir, A., et al., Paleovirology of ‘syncytins,’ retroviral env genes exapted for a role in placentation, Philos. Trans. R. Soc., B, 2013, vol. 368, no. 1626, p. e20120507.

  44. Lefeuvre, P., Harkins, G.W., Lett, J.M., et al., Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome, PLoS One, 2011, vol. 6, no. 5, p. e19193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mager, D. and Stoye, J., Mammalian endogenous retroviruses, Microbiol. Spectrosc., 2015, vol. 3, no. 1, pp. 1079–1100.

    Google Scholar 

  46. Magiorkinis, G., Gifford, R.J., Katzourakis, A., et al., Env-less endogenous retroviruses are genomic superspreaders, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, pp. 7385–7390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McAllister, R.M., Nicolson, M., Gardner, M.B., et al., C‑type virus released from cultured human rhabdomyosarcoma cells, Nat. New Biol., 1972, vol. 235, no. 53, pp. 3–6.

    Article  CAS  PubMed  Google Scholar 

  48. Meadows, J.R.S. and Lindblad-Toh, K., Dissecting evolution and disease using comparative vertebrate genomics, Nat. Rev. Genet., 2017, vol. 18, pp. 624–636.

    Article  CAS  PubMed  Google Scholar 

  49. Moffett, A. and Loke, C., Immunology of placentation in eutherian mammals, Nat. Rev. Immunol., 2006, vol. 6, pp. 584–594.

    Article  CAS  PubMed  Google Scholar 

  50. Muroi, Y., Sakurai, T., Hanashi, A., et al., CD9 regulates transcription factor GCM1 and ERVWE1 expression through cAMP/protein kinase A signaling pathway, Reproduction, 2009, vol. 138, pp. 945–951.

    Article  CAS  PubMed  Google Scholar 

  51. Nakaya, Y., Koshi, K., Nakagawa, S., et al., Fematrin-1 is involved in fetomaternal cell-to-cell fusion in Bovinae placenta and has contributed to diversity of ruminant placentation, J. Virol., 2013, vol. 87, no. 19, pp. 10563– 10572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Niman, H.L., Stephenson, J.R., Gardner, M.B., and Roy-Burman, P., RD-114 and feline leukaemia virus genome expression in natural lymphomas of domestic cats, Nature, 1977, vol. 266, no. 5600, pp. 357–360.

    Article  CAS  PubMed  Google Scholar 

  53. Ono, R., Nakamura, K., Inoue, K., et al., Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality, Nat. Genet., 2006, vol. 38, pp. 101–106.

    Article  CAS  PubMed  Google Scholar 

  54. Patel, M.R., Emerman, M., and Malik, H.S., Paleovirology—ghosts and gifts of viruses past, Curr. Opin. Virol., 2011, vol. 1, pp. 304–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pfarrer, C., Winther, H., Leiser, R., and Dantzer, V., The development of the endotheliochorial mink placenta: light microscopy and scanning electron microscopical morphometry of maternal vascular casts, Anat. Embryol., 1999, vol. 199, no. 1, pp. 63–74.

    Article  CAS  Google Scholar 

  56. Pybus, O.G. and Rambaut, A., Evolutionary analysis of the dynamics of viral infectious disease, Nat. Rev. Genet., 2009, vol. 10, pp. 540–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rasko, J.E., Battini, J.L., Gottschalk, R.J., et al., The RD114/simian type D retrovirus receptor is a neutral amino acid transporter, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 5, pp. 2129–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rivas-Carrillo, S.D., Pettersson, M.E., Rubin, C.-J., and Jern, P., Whole-genome comparison of endogenous retrovirus segregation across wild and domestic host species populations, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 43, pp. 11012–11017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sanjuán, R., From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses, PLoS Pathog., 2012, vol. 8, p. e1002685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Schubert, S.W., Lamoureux, N., Kilian, K., et al., Identification of integrin-alpha4, Rb1, and syncytin A as murine placental target genes of the transcription factor GCMa/Gcm1, J. Biol. Chem., 2008, vol. 283, pp. 5460–5465.

    Article  CAS  PubMed  Google Scholar 

  61. Sekita, Y., Wagatsuma, H., Nakamura, K., et al., Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta, Nat. Genet., 2008, vol. 40, pp. 243–248.

    Article  CAS  PubMed  Google Scholar 

  62. Sinha, A. and Johnson, W.E., Retroviruses of the RDR superinfection interference group: ancient origins and broad host distribution of a promiscuous env gene, Curr. Opin. Virol., 2017, vol. 25, pp. 105–112.

    Article  CAS  PubMed  Google Scholar 

  63. Sommerfelt, M.A. and Weiss, R.A., Receptor interference groups of 20 retroviruses plating on human cells, Virology, 1990, vol. 176, no. 1, pp. 58–69.

    Article  CAS  PubMed  Google Scholar 

  64. Sperber, G.O., Airola, T., Jern, P., and Blomberg, J., Automated recognition of retroviral sequences in genomic data—RetroTector, Nucleic Acids Res., 2007, vol. 35, pp. 4964–4976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Steitz, J., Borah, S., Cazalla, D., et al., Noncoding RNPs of viral origin, Cold Spring Harb. Perspect. Biol., 2011, vol. 3, p. a005165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Stromberg, K., Benveniste, R.E., Arthur, L.O., et al., Characterization of exogenous type D retrovirus from a fibroma of a macaque with simian AIDS and fibromatosis, Science, 1984, vol. 224, no. 4646, pp. 289–292.

    Article  CAS  PubMed  Google Scholar 

  67. van der Loo, W., Abrantes, J., and Esteves, P.J., Sharing of endogenous lentiviral gene fragments among leporid lineages separated for more than 12 million years, J. Virol., 2009, vol. 83, no. 5, pp. 2386–2388.

    Article  CAS  PubMed  Google Scholar 

  68. Varela, M., Spencer, T.E., Palmarini, M., and Arnaud, F., Friendly viruses: the special relationship between endogenous retroviruses and their host, Ann. N.Y. Acad. Sci., 2009, vol. 1178, pp. 157–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vogt, V.M. Retroviral virions and genomes, in Retroviruses, Coffin, J.M., Hughes, S.H., and Varmus, H.E., Eds., Plainview, NY: Cold Spring Harbor Lab. Press, 1997, pp. 27–69.

    Google Scholar 

  70. Weiss, R.A., The discovery of endogenous retroviruses, Retrovirology, 2006, vol. 3, pp. 67–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wertheim, J.O. and Kosakovsky Pond, S.L., Purifying selection can obscure the ancient age of viral lineages, Mol. Biol. Evol., 2011, vol. 28, pp. 3355–3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilkins, A.S., Wrangham, R.W., and Tecumseh Fitch, W., The ‘domestication syndrome’ in mammals: a unified explanation based on neural crest cell behavior and genetics, Genetics, 2014, vol. 197, no. 3, pp. 795–808.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Xu, X., Zhao, H., Gong, Z., and Han, G., Endogenous retroviruses of non-avian/mammalian vertebrates illuminate diversity and deep history of retroviruses, PLoS Pathog., 2018, vol. 14, no. 6, p. e1007072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yu, C., Shen, K., Lin, M., et al., GCMa regulates the syncytin-mediated trophoblastic fusion, J. Biol. Chem., 2002, vol. 277, pp. 50062–50068.

    Article  CAS  PubMed  Google Scholar 

  75. Zamani, W., Ghasempouri, S.M., Rezaei, H.R., et al., Comparing polymorphism of 86 candidate genes putatively involved in domestication of sheep, between wild and domestic Iranian sheep, Meta Gene, 2018, vol. 17, pp. 223–231.

    Article  Google Scholar 

  76. Zhdanov, V.M., Lapin, B.A., Bykovskii, A.F., et al., Biophysical and biochemical properties of leukovirus passaged in monkeys, Dokl. Akad. Nauk SSSR, 1978, vol. 208, pp. 230–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Krasnov.

Ethics declarations

Conflict of interests. The author declares that there is no conflict of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals as subjects of research.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipkina, S.I., Nalobin, D.S., Krasnov, M.S. et al. The Role of Endogenous Retroviruses in the Domestication Process. Biol Bull Rev 11, 383–391 (2021). https://doi.org/10.1134/S2079086421040022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421040022

Keywords:

Navigation