Skip to main content
Log in

A Review of the Mechanical and Thermal Properties of Microscale and Nanoscale Materials in Terms of Straintronics

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The specificity of the mechanical and thermal properties (especially thermal conductivity) of crystalline, amorphous, and composite materials on the micro- and nanoscales is studied in terms of straintronics (controlling the physical properties of solids by means of controlled elastic deformation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Bhushan, B., Springer Handbook of Nanotechnology, New York: Springer, 2010.

    Book  Google Scholar 

  2. Golovin, Yu.I., Osnovy nanotekhnologii (Fundamentals of Nanotechnology), Moscow: Mashinostroenie, 2012.

  3. Vajtai, R., Springer Handbook of Nanomaterials, New York: Springer, 2013.

    Book  Google Scholar 

  4. Chuang, T., Anderson, P.M., Wu, M.-K., and Hsieh, S., Nanomechanics of Materials and Structures, Dordrecht: Springer, 2006.

    Book  Google Scholar 

  5. Golovin, Yu.I., Nanoindentirovanie i ego vozmozhnosti (Nanoindentation and Its Capabilities), Moscow: Mashinostroenie, 2009.

  6. Kozlov, E.V., Glezer, A.M., Koneva, N.A., et al., Osnovy plasticheskoi deformatsii nanostrukturnykh materialov (Fundamentals of Plastic Deformation of Nanostructured Materials), Moscow: Fizmatlit, 2016.

  7. Sabirov, I., Enikeev, N.A., Murashkin, M.Yu., and Valiev, R.Z., Ob”emnye nanostrukturnye materialy s mnogofunktsional’nymi svoistvami (Bulky Nanostructured Materials with Multifunctional Properties), St. Petersburg: Eko-Vektor, 2018.

  8. Hsueh, C.-H., Schmauder, S., Chen, C.-S., et al., Handbook of Mechanics of Materials, New York: Springer, 2019.

    Google Scholar 

  9. Voyiadjis, G.Z. and Yaghoobi, M., Size Effects in Plasticity: From Macro to Nano, New York: Academic, 2019.

    Google Scholar 

  10. Golovin, Yu.I., Phys. Solid State, 2008, vol. 50, no. 12, p. 2205.

    Article  ADS  Google Scholar 

  11. Andrievski, R.A. and Glezer, A.M., Phys.—Usp., 2009, vol. 52, p. 315.

    Article  ADS  Google Scholar 

  12. Todd, C., Hufnagel, T.C., Schuh, C.A., et al., Acta Mater., 2016, vol. 109, p. 375.

    Article  ADS  Google Scholar 

  13. Dehm, G., Jaya, B.N., Raghavan, R., et al., Acta Mater., 2018, vol. 142, p. 248.

    Article  ADS  Google Scholar 

  14. Brazhkin, V.V., Phys.—Usp., 2020, vol. 63, p. 523.

    Article  ADS  Google Scholar 

  15. Golovin, Yu.I., Phys. Solid State, 2021, vol. 63, no. 1, p. 1.

    Article  ADS  Google Scholar 

  16. Bao, H., Chen, J., Gu, X., et al., ES Energy Environ., 2018, vol. 1, p. 16.

    Google Scholar 

  17. Lebon, G.J., J. NET, 2014, vol. 39, no. 1, p. 35.

    ADS  Google Scholar 

  18. Malheiros, F.C., Nascimento, J.G., Fernandes, A.P., et al., Rev. Sci. Instrum., 2020, vol. 91, 014902.

    Article  ADS  Google Scholar 

  19. Feng, T., He, J., Rai, A., et al., Phys. Rev. Appl., 2020, vol. 14, no. 4, 44023.

    Article  Google Scholar 

  20. Yao, Y., Sun, J., Zeng, X., et al., Small, 2018, vol. 14, 1704044.

    Article  Google Scholar 

  21. Hu, Y., Zeng, L., and Minnich, A.J., Nat. Nanotechnol., 2015, vol. 10, p. 701.

    Article  ADS  Google Scholar 

  22. Braun, J.L., Baker, C.H., Giri, A., et al., Phys. Rev. B, 2016, vol. 93, 140201.

    Article  ADS  Google Scholar 

  23. Kaiser, J., Feng, T., Maassen, J., et al., J. Appl. Phys., 2017, vol. 121, 044302.

    Article  ADS  Google Scholar 

  24. Ferrando-Villalba, P., Lopeandia, A.F., Abad, L., et al., Nanotechnology, 2014, vol. 5, 185402.

    Article  ADS  Google Scholar 

  25. Wingert, M.C., Zheng, J., Kwon, S., et al., Semicond. Sci. Technol., 2016, vol. 31, 113003.

    Article  ADS  Google Scholar 

  26. Zhang, Z.M., Nano/Microscale Heat Transfer, New York: Springer, 2020.

    Book  MATH  Google Scholar 

  27. Lee, H.-F., Kumar, S., and Haque, M.A., Acta Mater., 2010, vol. 58, p. 6619.

    Article  ADS  Google Scholar 

  28. Liu, J. and Yang, R., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 81, 174122.

    Article  ADS  Google Scholar 

  29. Alam, M.T., Manoharan, M.P., Haque, M.A., et al., J. Micromech. Microeng., 2012, vol. 22, 045001.

    Article  ADS  Google Scholar 

  30. Li, Z., Wang, H., Zhao, H., et al., Rev. Sci. Instrum., 2020, vol. 91, 084901.

    Article  ADS  Google Scholar 

  31. Liu, J. and Yang, R., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 81, 174122.

    Article  ADS  Google Scholar 

  32. Bukharaev, A.A., Zvezdin, A.K., Pyatakov, A.P., et al., Phys.—Usp., 2018, vol. 61, p. 1175.

    Article  ADS  Google Scholar 

  33. He, J., Kim, K., Wang, Y., and Liu, J., Appl. Phys. Lett., 2018, vol. 112, 051907.

    Article  ADS  Google Scholar 

  34. Duan, X., Li, Z., and Liu, J., J. Appl. Phys., 2019, vol. 125, 164303.

    Article  ADS  Google Scholar 

  35. Golovin, Yu.I., Zhigachev, A.O., Golovin, D.Y., et al., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 7, p. 815.

    Article  Google Scholar 

  36. Jaya, B.N. and Alam, M.Z., Curr. Sci., 2013, vol. 105, no. 8, p. 1073.

    Google Scholar 

  37. Hosemann, P., Shin, C., and Kiener, D.J., J. Mater. Res., 2015, vol. 30, no. 9, p. 1231.

    Article  ADS  Google Scholar 

  38. Hosemann, P., Scr. Mater., 2018, vol. 143, p. 161.

    Article  Google Scholar 

  39. Muskeri, S., Hasannaeimi, V., Salloom, R., et al., Sci. Rep., 2020, vol. 10, 2669.

    ADS  Google Scholar 

  40. Hasannaeimi, V., Muskeri, S., Gwalani, B., et al., Mater. Today, 2020, vol. 24, 101237.

    Google Scholar 

  41. Vo, H.T., Still, E.K., Lam, K., et al., Mater. Sci. Eng., A, 2021, vol. 779, 140124.

    Article  Google Scholar 

  42. Dimiduk, D.M., Uchic, M.D., and Parthasarathy, T.A., Acta Mater., 2005, vol. 53, p. 4065.

    Article  ADS  Google Scholar 

  43. Uchic, M.D., Dimiduk, D.M., Wheeler, R., et al., Scr. Mater., 2006, vol. 54, p. 759.

    Article  Google Scholar 

  44. Yao, N., Focused Ion Beam Systems: Basics and Applications, Cambridge: Cambridge Univ. Press, 2007.

    Book  Google Scholar 

  45. Babinsky, K., De Kloe, R., Clemens, H., and Primig, S., Ultramicroscopy, 2014, vol. 144, no. 9, p. 9.

    Article  Google Scholar 

  46. Herbig, M., Choi, P., and Raabe, D., Ultramicroscopy, 2015, vol. 153, p. 32.

    Article  Google Scholar 

  47. Povstugar, I., Weber, J., Naumenko, D., et al., Microsc. Microanal., 2019, vol. 25, p. 11.

    Article  ADS  Google Scholar 

  48. Jang, D., Li, X., Gao, H., and Greer, J.R., Nat. Nanotechnol., 2012, vol. 7, p. 594.

    Article  ADS  Google Scholar 

  49. Kabel, J., Hosemann, P., Zayachuk, Y., et al., J. Mater. Res., 2018, vol. 33, p. 424.

    Article  ADS  Google Scholar 

  50. Xiao, Y., Besharatloo, H., Gan, B., et al., J. Alloys Compd., 2020, vol. 822, 153536.

    Article  Google Scholar 

  51. Uchic, M.D., Shade, P.A., and Dimiduk, D.M., Annu. Rev. Mater. Res., 2009, vol. 39, p. 361.

    Article  ADS  Google Scholar 

  52. Greer, J.R. and De Hosson, J.T.M., Prog. Mater. Sci., 2011, vol. 56, p. 654.

    Article  Google Scholar 

  53. Han, W.-Z., Huang, L., Ogata, S., et al., Adv. Mater., 2015, vol. 27, p. 3385.

    Article  Google Scholar 

  54. Kim, J.-Y., Jang, D., and Greer, J.R., Acta Mater., 2010, vol. 58, p. 2355.

    Article  ADS  Google Scholar 

  55. Chen, C.Q., Pei, Y.T., and De Hosson, J.T.M., Acta Mater., 2010, vol. 58, p. 189.

    Article  ADS  Google Scholar 

  56. Volkert, C.A., Donohue, A., and Spaepen, F., J. Appl. Phys., 2008, vol. 103, 083539.

    Article  ADS  Google Scholar 

  57. Jang, D. and Greer, J.R., Nat. Mater., 2010, vol. 9, p. 215.

    Article  ADS  Google Scholar 

  58. Wang, C.-C., Ding, J., Cheng, Y.-Q., et al., Acta Mater., 2012, vol. 60, nos. 13–14, p. 5370.

    Article  ADS  Google Scholar 

  59. Xiao, Y., Kozak, R., Hach, M.J.R., et al., Mater. Sci. Eng., A, 2020, vol. 790, 139429.

    Article  Google Scholar 

  60. Yilmaz, H., Williams, C.J., Risan, J., et al., Materials, 2019, vol. 7, 100424.

    Google Scholar 

  61. Chen, M., Wehrs, J., Sologubenko, A.S., et al., Mater. Des., 2020, vol. 189, 108506.

    Article  Google Scholar 

  62. Xiao, Y., Zou, Y., Sologubenko, A.S., et al., Mater. Des., 2020, vol. 193, 108786.

    Article  Google Scholar 

  63. Wehrs, J., Mohanty, G., Guillonneau, G., et al., JOM, 2015, vol. 67, no. 8, p. 1684.

    Article  Google Scholar 

  64. Zamanzade, M., Velayarce, J.R., Abad, O.T., et al., Mater. Sci. Eng., A, 2016, vol. 652, p. 370.

    Article  Google Scholar 

  65. Wharry, J.P., Yano, K.H., and Patki, P.V., Scr. Mater., 2019, vol. 162, p. 63.

    Article  Google Scholar 

  66. Bagheripoor, M. and Klassen, R., Rev. Adv. Mater. Sci., 2018, vol. 56, p. 21.

    Article  Google Scholar 

  67. Lee, H., Huen, W.Y., Vimonsatit, V., et al., Sci. Rep., 2019, vol. 9, 13189.

    Article  ADS  Google Scholar 

  68. Barnoush, A., Hosemann, P., Molina-Aldareguia, J., et al., Mater. Today, 2019, vol. 44, p. 471.

    Google Scholar 

  69. Sebastiani, M., Johanns, K.E., Herbert, E.G., et al., Curr. Opin. Solid State Mater. Sci., 2015, vol. 19, no. 6, p. 324.

    Article  ADS  Google Scholar 

  70. Xiao, Y., Besharatloo, H., Gan, B., et al., J. Alloys Compd., 2020, vol. 822, 153536.

    Article  Google Scholar 

  71. Ast, J., Ghidelli, M., and Durst, K., Mater Des., 2019, vol. 173, 107762.

    Article  Google Scholar 

  72. Clark, R.N., Burrows, R., Patel, R., et al., Heliyon, 2020, vol. 6, e03448.

    Article  Google Scholar 

  73. Du, D., Wu, Y., Zhao, Y., et al., Mater. Charact., 2020, vol. 164, 110302.

    Article  Google Scholar 

  74. Beake, B.D., Ctvrtlik, R., Harris, A.J., et al., Mater. Sci. Eng., A, 2020, vol. 780, 139159.

    Article  Google Scholar 

  75. Bruns, S., Petho, L., Minnert, C., et al., Mater. Des., 2020, vol. 186, 108311.

    Article  Google Scholar 

  76. Lee, J.H., Gao, Y.F., Johanns, K.E., et al., Acta Mater., 2012, vol. 60, p. 5448.

    Article  ADS  Google Scholar 

  77. Maio, D.D. and Roberts, S.G., J. Mater. Res., 2005, vol. 20, p. 299.

    Article  ADS  Google Scholar 

  78. Halford, T.P., Takashima, K., Higo, Y., et al., Fatigue Fract. Eng. Mater. Struct., 2005, vol. 28, p. 695.

    Article  Google Scholar 

  79. Liu, H., Falzon, B.G., Catalanotti, G., et al., Aeronaut. J., 2018, vol. 122, no. 1255, p. 1352.

    Article  Google Scholar 

  80. Matoy, K., Schoenherr, H., Detzel, T., et al., Thin Solid Films, 2009, vol. 518, p. 247.

    Article  ADS  Google Scholar 

  81. Sebastiani, M., Johanns, K.E., Herbert, E.G., et al., Philos. Mag., 2015, vol. 95, p. 1928.

    Article  ADS  Google Scholar 

  82. Jaya, B.N., Kirchlechner, C., and Dehm, G., J. Mater. Res., 2015, vol. 30, no. 5, p. 686.

    Article  ADS  Google Scholar 

  83. Lauener, C.M., Petho, L., Chen, M., et al., Mater. Des., 2018, vol. 142, p. 340.

    Article  Google Scholar 

  84. Gallo, P., Sumigawa, T., and Kitamura, T., Fratt. Integr. Strutt., 2019, vol. 47, p. 408.

    Google Scholar 

  85. Wang, A.-N., Nonemacher, J.F., and Yan, G., J. Eur. Ceram. Soc., 2018, vol. 38, p. 3201.

    Article  Google Scholar 

  86. Liu, H.T., Yang, L.W., Han, S., et al., J. Eur. Ceram. Soc., 2017, vol. 37, p. 883.

    Article  Google Scholar 

  87. Bolelli, G., Righi, M.G., Mughal, M.Z., et al., Mater. Des., 2019, vol. 166, 107615.

    Article  Google Scholar 

  88. Best, J.P., Wehrs, J., Polyakov, M., et al., Scr. Mater., 2019, vol. 162, p. 190.

    Article  Google Scholar 

  89. Nonemacher, J.F., Arinicheva, Y., Yan, G., et al., J. Eur. Ceram. Soc., 2020, vol. 40, no. 8, p. 3057.

    Article  Google Scholar 

  90. Heller, M. and Gibson, J.S.K., -l., pei r. et al, Acta Mater., 2020, vol. 194, p. 452.

    Article  ADS  Google Scholar 

  91. Ast, J., Schwiedrzik, J.J., Wehrs, J., et al., Mater. Des., 2018, vol. 152, p. 168.

    Article  Google Scholar 

  92. Sumigawa, T., Shimada, T., Tanaka, S., et al., ACS Nano, 2017, vol. 11, p. 6271.

    Article  Google Scholar 

  93. Kitamura, T., Sumigawa, T., Shimada, T., and Van Lich, L., Eng. Fract. Mech., 2018, vol. 187, p. 33.

    Article  Google Scholar 

  94. Gallo, P. and Sapora, A., Appl. Sci., 2020, vol. 10, 1640.

    Article  Google Scholar 

  95. Akinwande, D., Brennan, C.J., Bunch, J.S., et al., Extreme Mech. Lett., 2017, vol. 13, p. 42.

    Article  Google Scholar 

  96. Gao, W. and Huang, R., J. Mech. Phys. Solids, 2014, vol. 66, p. 42.

    Article  ADS  MathSciNet  Google Scholar 

  97. Jang, B., Magisa, A.E., Kim, J.-H., et al., Extreme Mech. Lett., 2017, vol. 14, p. 10.

    Article  Google Scholar 

  98. Liu, K. and Wu, J., J. Mater. Res., 2016, vol. 31, p. 832.

    Article  ADS  Google Scholar 

  99. Pippan, R., Wurster, S., and Kiener, D., Mater. Des., 2018, vol. 159, p. 252.

    Article  Google Scholar 

  100. Shimada, T., Huang, K., Van Lich, L., et al., Nanoscale, 2020, vol. 12, 18363.

    Article  Google Scholar 

  101. Cahill, D.G., Braun, P.V., Chen, G., et al., Appl. Phys. Rev., 2014, vol. 1, 011305.

    Article  ADS  Google Scholar 

  102. Shao, C., Yu, X., Yang, N., et al., Nanoscale Microsc. Thermophys. Eng., 2017, vol. 21, p. 201.

    Article  ADS  Google Scholar 

  103. Rebay, M., Kakaç, S., and Cotta, R.M., Microscale & Nanoscale Heat Transfer: Analysis, Design, and Applications, Boca Raton: CRC, 2016.

    Book  Google Scholar 

  104. Dmitriev, A.S., Vvedenie v nanoteplofiziku (Introduction to Nanothermal Physics), Moscow: BINOM, 2019.

  105. Guo, Z., J. Enhanced Heat Transfer, 2019, vol. 26, no. 5, p. 429.

    Article  Google Scholar 

  106. Zhang, Z.M., Nano/Microscale Heat Transfer, Berlin: Springer, 2020.

    Book  MATH  Google Scholar 

  107. Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer, Lepri, S., Ed., Berlin: Springer, 2016.

    Google Scholar 

  108. Zhmakin, A.I., Tech. Phys., 2021, vol. 66, no. 1, p. 1.

    Article  Google Scholar 

  109. Torres, P., Royo, M., and Lopez-Suarez, M., Phys. Rev. B, 2020, vol. 102, 144305.

    Article  ADS  Google Scholar 

  110. Ferrari, A.C., Bonaccorso, F., Fal’ko, V., et al., Nanoscale, 2015, vol. 7, p. 4598.

    Article  ADS  Google Scholar 

  111. Gong, F., Li, H., Wang, W., et al., Coatings, 2018, vol. 8, p. 63.

    Article  Google Scholar 

  112. Huang, P., Li, Y., Yang, G., et al., Nano Mater. Sci., 2021, vol. 3, no. 1, p. 1.

    ADS  Google Scholar 

  113. Zhang, Z., Ouyang, Y., Cheng, Y., et al., Phys. Rep., 2020, vol. 860, p. 1.

    Article  ADS  MathSciNet  Google Scholar 

  114. Chen, X.-K., Zeng, Y.-J., and Chen, K.-Q., Front. Mater., 2020, vol. 7, 578791.

    Article  Google Scholar 

  115. Fu, Y., Hansson, J., and Liu, Y., 2D Mater., 2020, vol. 7, 012001.

  116. DeAngelis, F., Muraleedharan, M.G., Moon, J., et al., Nanoscale Microsc. Thermophys. Eng., 2018, vol. 23, no. 2, p. 81.

    Article  ADS  Google Scholar 

  117. Wingert, M.C., Zheng, J., Kwon, S., and Chen, R., Semicond. Sci. Technol., 2016, vol. 31, 113003.

    Article  ADS  Google Scholar 

  118. Nakamura, Y., Sci. Technol. Adv. Mater., 2018, vol. 19, no. 1, p. 31.

    Article  Google Scholar 

  119. Xu, X., Pereira, L.F.C., Wang, Y., et al., Nat. Commun., 2014, vol. 5, 3689.

    Article  ADS  Google Scholar 

  120. Nika, D.L. and Balandin, A.A., in Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer, Lepri, S., Ed., Berlin: Springer, 2016, p. 339.

    Google Scholar 

  121. Ghosh, S., Bao, W., Balandin, A.A., et al., Nat. Mater., 2010, vol. 9, p. 555.

    Article  ADS  Google Scholar 

  122. Kuang, Y., Lindsay, L., and Huang, B., Nano Lett., 2015, vol. 15, no. 9, p. 6121.

    Article  ADS  Google Scholar 

  123. Li, X., Maute, K., Dunn, M.L., and Yang, R., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 81, 245318.

    Article  ADS  Google Scholar 

  124. Zhang, C., Hao, X.-L., Wang, C.-X., et al., Sci. Rep., 2017, vol. 7, 41398.

    Article  ADS  Google Scholar 

  125. Lee, H.-F., Kumar, S., and Haque, M.A., Acta Mater., 2010, vol. 58, p. 6619.

    Article  ADS  Google Scholar 

  126. Alam, M.T., Manoharan, M.P., Haque, M.A., et al., J. Micromech. Microeng., 2012, vol. 22, 045001.

    Article  ADS  Google Scholar 

  127. Li, Z., Wang, H., Zhao, H., et al., Rev. Sci. Instrum., 2020, vol. 91, 084901.

    Article  ADS  Google Scholar 

  128. Wehmeyer, G., Yabuki, T., Monachon, C., et al., Appl. Phys. Rev., 2017, vol. 4, 041304.

    Article  ADS  Google Scholar 

  129. Carlomagno, I., Cimmelli, V.A., and Jou, D., Phys. Lett. A, 2020, vol. 384, 126905.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed with the support of Moscow State University, and on equipment at the shared resource center of Tambov State University.

Funding

This work was supported by the Russian Science Foundation, project no. 20-19-00602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Golovin, D.Y. A Review of the Mechanical and Thermal Properties of Microscale and Nanoscale Materials in Terms of Straintronics. Bull. Russ. Acad. Sci. Phys. 85, 709–722 (2021). https://doi.org/10.3103/S106287382107008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287382107008X

Navigation