Skip to main content
Log in

Studying the States of Hydrogen in Graphene, Graphite, and Steels

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Methodology is developed and tested for the effective approximation of carbon nanostructures, graphite materials, and steels using Gaussians and the processing (in approximations of first and second order reactions) of hydrogen thermal desorption spectra obtained at a single rate of heating. The energies of activation and rate constants of hydrogen desorption are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Wei, F.-G., Enomoto, M., and Tsuzaki, K., Comput. Mater. Sci., 2012, vol. 51, p. 322.

    Article  Google Scholar 

  2. Atsumi, H. and Kondo, Y., Fusion Eng. Des., 2018, vol. 131, p. 49.

    Article  Google Scholar 

  3. Legrand, E., Oudriss, A., Savall, C., et al., Int. J. Hydrogen Energy, 2015, vol. 40, p. 2871.

    Article  Google Scholar 

  4. Ebihara, K.-I., Kaburaki, H., Suzudo, T., and Takai, K., ISIJ Int., 2009, vol. 49, p. 1907.

    Article  Google Scholar 

  5. Nechaev, Yu.S., Alexandrova, N.M., Shurygina, N.A., et al., J. Nucl. Mater., 2020, vol. 535, 52162.

    Article  ADS  Google Scholar 

  6. Nechaev, Yu.S., Alexandrova, N.M., Shurygina, N.A., et al., Fullerenes, Nanotubes, Carbon Nanostruct., 2020, vol. 28, no. 2, p. 147.

    Article  ADS  Google Scholar 

  7. Nechaev, Yu.S., Alexandrova, N.M., Cheretaeva, A.O., et al., Int. J. Hydrogen Energy, 2020, vol. 45, no. 46.

  8. Nechaev, Yu.S., Rodionova, I.G., Udod, K.A., et al., Probl. Chern. Met. Materialoved., 2013, no. 4, p. 5.

  9. Zaika, Yu.V., Kostikova, E.K., and Nechaev, Yu.S., Tech. Phys., 2021, vol. 66, p. 210.

    Article  Google Scholar 

  10. Rajasekaran, S., Abilid-Pedersen, F., Ogasawara, H., et al., Phys. Rev. Lett., 2013, vol. 111, no. 8, 085503.

    Article  ADS  Google Scholar 

  11. Denisov, E.A. and Kompaniets, T.N., Tech. Phys., 2001, vol. 46, p. 240.

    Article  Google Scholar 

  12. Denisov, E.A., Kompaniets, T.N., Yukhimchuk, A.A., et al., Tech. Phys., 2013, vol. 58, p. 779.

    Article  Google Scholar 

  13. Kompaniets, T.N., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2009, no. 3, p. 16.

  14. Escobar, D.P., Verbeken, K., Duprez, L., and Verhaege, M., Mater. Sci. Eng., A, 2012, vol. 551, p. 50.

    Article  Google Scholar 

  15. Yagodzinskyy, Y., Todoshchenko, O., Papula, S., and Hanninen, H., Steel Res. Int., 2010, vol. 82, no. 1, p. 20.

    Article  Google Scholar 

  16. Silverstein, R., Eliezer, D., and Tal-Gutelmacher, E., J. Alloys Compd., 2018, vol. 747, p. 511.

    Article  Google Scholar 

  17. Sofo, J.O., Chaudhari, A.S., and Barber, G.D., Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 75, 153401.

    Article  ADS  Google Scholar 

  18. Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., et al., Science, 2009, vol. 323, p. 610.

    Article  ADS  Google Scholar 

  19. Nechaev, Yu.S. and Veziroglu, T.N., Int. J. Phys. Sci., 2015, vol. 10, p. 54.

    Article  Google Scholar 

  20. Nechaev, Yu.S., Phys.—Usp., 2006, vol. 49, no. 6, p. 563.

    Article  ADS  Google Scholar 

  21. Nechaev, Yu.S. and Ochsner, A., DDF, 2019, vol. 391, p. 246.

    Article  Google Scholar 

  22. Nechaev, Yu.S., Phys.—Usp., 2008, vol. 51, no. 7, p. 681.

    Article  ADS  Google Scholar 

  23. Nechaev, Yu.S., Solid State Phenom., 2008, vol. 138, p. 91.

    Article  Google Scholar 

  24. Nechaev, Yu.S. and Filippov, G.A., Defect Diffus. Forum, 2001, vols. 194–199, p. 1099.

  25. Escobar, D.P., Depover, T., Duprez, L., et al., Acta Mater., 2012, vol. 60, p. 2593.

    Article  ADS  Google Scholar 

  26. Frappart, S., Oudriss, A., Feaugas, X., et al., Scr. Mater., 2011, vol. 65, p. 859.

    Article  Google Scholar 

  27. Ebihara, K.-I. and Kaburaki, H., ISIJ Int., 2012, vol. 52, no. 2, p. 181.

    Article  Google Scholar 

  28. Enomoto, M., Hirakami, D., and Tarui, T., Metall. Mater. Trans. A, 2012, vol. 43, no. 2, p. 572.

    Article  Google Scholar 

  29. Bergers, K., De Souza, E.C., Thomas, I., et al., Steel Res. Int., 2010, vol. 81, no. 7, p. 499.

    Article  Google Scholar 

  30. Enomoto, M., Hirakami, D., and Tarui, T., ISIJ Int., 2006, vol. 46, no. 9, p. 1381.

    Article  Google Scholar 

  31. Wei, F.G., Hara, T., and Tsuzaki, K., Metall. Mater. Trans., vol. 35, no. 3, p. 587.

  32. Bar, R., Dabah, E., Eliezer, D., et al., Proc. Eng., 2011, vol. 10, p. 3668.

    Article  Google Scholar 

  33. Ogorodnikova, O.V., Zhou, Z., Sugiyama, K., et al., Nucl. Fusion, 2017, vol. 57, 036010.

    Article  ADS  Google Scholar 

  34. Alimov, V., Hatano, Y., Sugiyama, K., et al., Fusion Eng. Des., 2016, vol. 113, p. 336.

    Article  Google Scholar 

  35. Ryabtsev, S.A., Gasparyan, Yu.M., Harutyunyan, Z.R., et al., Phys. Scr., 2017, vol. 170, 014016.

    Article  Google Scholar 

  36. Ryabtsev, S.A., Gasparyan, Yu.M., Ogorodnikova, O.V., et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2018, vol. 12, no. 5, p. 1032.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-19149-mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Nechaev.

Additional information

Translated by Sh. Galyaltdinov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechaev, Y.S., Alexandrova, N.M., Shurygina, N.A. et al. Studying the States of Hydrogen in Graphene, Graphite, and Steels. Bull. Russ. Acad. Sci. Phys. 85, 701–708 (2021). https://doi.org/10.3103/S1062873821070169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821070169

Navigation