Skip to main content
Log in

Deep Steel Desulfurization during Chamber Degassing

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The rather long period of processing deoxidized steel in a chamber degasser is often combined with metal desulfurization. The results of degassing of ultralow-sulfur pipe steel under a refining slag in a 180-ton steel-teeming ladle are presented. The influence of such factors as a decrease in the melt temperature and changes in the phase chemical composition and the slag mass on the desulfurization parameters is analyzed. At the end of degassing, the equilibrium partition ratio of sulfur between slag and metal is shown to decrease significantly, and the actual partition ratios of sulfur approach the equilibrium one. During vacuum treatment, a decrease in the sulfur content is detected both in the slag and in the metal. The element partition balance between the slag and the metal shows that the decrease in the sulfur content in the slag is caused by an increase in its mass and a decrease in the total sulfur content in the slag–metal system. The influence of the deoxidized-steel degassing conditions on the degree of sulfur removal from the slag into the gas phase is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. From here on, the element contents are given in wt %.

REFERENCES

  1. L. I. Efron, Metal Science in “Big” Metallurgy. Pipe Steels (Metallurgizdat, Moscow, 2012).

    Google Scholar 

  2. Y. Fukuda, T. Imai, T. Sado, et al., “Development of high-grade steel manufacturing technology for mass production at Nagoya works,” Nippon Steel Tech. Report., No. 104, 90–96 (2013).

  3. D. V. Kudashov, E. S. Mursenkov, P. P. Stepanov, et al., “Implementation ladle treatment and casting of pipe steels with requirement of resistance in H2S media under the conditions of a foundry–rolling complex,” Stal’, No. 8, 48–56 (2017).

  4. I. P. Shabalov, Yu. I. Matrosov, A. A. Kholodnyi, et al., “Gas–Oil Pipeline Steel Resistant against Fracture in Hydrogen Sulfide-Containing Media (Metallurgizdat, Moscow, 2017).

    Google Scholar 

  5. H. Matsumoto, S. Kimura, and T. Mimura, “Influence of slag composition and stirring energy on desulfurization gas-stirred ladles,” in Proceedings of 3rd International Conference on Process Development in Iron and Steelmaking SCANMET III (Lulea, 2008), Vol. 2, pp. 315–323.

  6. V. M. Safonov, V. V. Kislitsa, B. A. Murysev, and D. V. Morov, “Comparative estimation of the material costs for deep desulfurization of steel in a ladle–furnace unit,” Stal’, No. 9, 6–9 (2017).

  7. M. Nadif, J. Suero, C. Rodhesly, et al., “Desulfurization practices in ArcelorMittal Flat Carbon Western Europe,” in Proceedings of 3rd International Conference on Process Development in Iron and Steelmaking SCANMET III (Lulea, 2008), Vol. 2, pp. 569–580.

  8. G. Stolte, Secondary Metallurgy: Fundamentals, Processes, Applications (Stahleisen, Düsseldorf, 2002).

    Google Scholar 

  9. S. V. Zhuravleva, Yu. S. Paniotov, V. S. Mameshin, and A. S. Gritsenko, “Analysis of sulfur equilibrium in the metal–slag system,” Metall Lit’e Ukrainy, No. 1 (248), 15–19 (2014).

    Google Scholar 

  10. M. V. Savel’ev, A. S. Tkachev, and O. Yu. Sheshukov, “Distribution of sulfur over the metallurgical production processing stages in AO EVRAZ NTMK,” in Proceedings of International Conference on Production and Metallurgy (NTI (filial) UrFU, Nizhny Tagil, 2020), pp. 259–265.

  11. D. Yanke, “Metallurgical fundamentals of vacuum treatment of liquid steel,” Chern. Met., No. 19, 3–11 (1987).

  12. D.-P. Zhan, Z.-H. Jiang, and W.-Z. Wang, “Development of deep desulfurization technology with premelted slag during RH-KTB refining,” Develop. Chem. Eng. Miner. Proc. 14 (3/4), 375–384 (2006).

    Article  Google Scholar 

  13. F. N. H. Schrama, E. M. Beunder, B. van den Berg, et al., “Sulphur removal in ironmaking and oxygen steelmaking,” Ironmak. Steelmak. 44 (5), 333–343 (2017).

    Article  CAS  Google Scholar 

  14. J. Bjorklund, M. Andersson, T. Miki, and P. Jonsson, “Thermodynamic consideration of oxygen and sulphur removal during ladle treatment,” in Proceedings of 3rd International Conference on Process Development in Iron and Steelmaking SCANMET III (Lulea, 2008), Vol. 2, pp. 581–588.

  15. M. M. Nzotta, D. Sichen, and S. Seetharaman, “Sulphide capacities in some multicomponent slag systems,” ISIJ Int., No. 11, 1170–1179 (1998).

  16. D. Sosonsky and I. Sommerville, “The composition and temperature dependence of the sulfide capacity of metallurgical slags,” Met. Trans. B 17, 331–337 (1986).

    Article  Google Scholar 

  17. R. Young, J. Duffy, G. Hassall, and Z. Zu, “Use of optical basicity concept for determining phosphorus and sulphur slag–metal partitions,” Ironmak. Steelmak., No. 19, 201–219 (1992).

  18. H. Hayakawa, M. Hasegawa, K. Ohnuki, et al., “Sulphide capacities of CaO–SiO2–Al2O3–MgO slags,” Steel Res. Int. 77 (1), 14–20 (2006).

    Article  CAS  Google Scholar 

  19. Y. Taniguchi, N. Sano, and S. Seetharaman, “Sulphide capacities of CaO–Al2O3–SiO2–MgO–MnO slags in the temperature range 1673–1773 K,” ISIJ Int. 49 (2), 156–163 (2009).

    Article  CAS  Google Scholar 

  20. W. Xiao, M. Wang, and Y. Bao, “The research of low-oxygen control and oxygen behavior during RH process in silicon-deoxidization bearing steel,” Metals 9 (8), 15 (2019). https://doi.org/10.3390/met9080812

    Article  CAS  Google Scholar 

  21. K. Steneholm, “The effect of ladle treatment on steel cleanness in tool steels,” Doct. Thesis, Royal Institute of Technology, Stockholm, 2016.

  22. C. Shi, H. Wang, and J. Li, “Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting,” Met. Mater. Trans. B 49, 1675–1689 (2018).

    Article  CAS  Google Scholar 

  23. Y. Ren, “Modeling reoxidation behavior of Al–Ti containing steels by CaO–Al2O3–MgO–SiO2 slag,” J. Iron Steel Res. Int. 25, 146– 156 (2018).

    Article  Google Scholar 

  24. M. Andersson, M. Hallberg, L. Jonsson, and P. Jonsson, “Slag–metal reactions during ladle treatment with focus on desulfurization,” Ironmak. Steelmak. 29 (3), 224–232 (2002).

    Article  CAS  Google Scholar 

  25. Z. Slović, Lj. Nedeljković, K. Raić, and S. Dević, “A numerical analysis as a tool for a prediction of final sulphur steel ladle,” Met. Mater. Eng. 21 (3), 143–154 (2015).

    Article  Google Scholar 

  26. G. Pierre and I. Chipman, “Distribution of sulfur between the gaseous phase and slags containing iron oxide,” Probl. Sovr. Metall., No. 4, 5–14 (1957).

  27. V. A. Grigoryan, A. A. Zhukhovitskii, and Yu. A. Minaev, “Oxidation of slag sulfur by gas phase oxygen,” Izv. Akad. Nauk SSSR, Ser. Metall. Gornoe Delo, No. 1, 61–66 (1964).

    Google Scholar 

  28. V. A. Grigoryan, A. A. Zhukhovitskii, and Yu. A. Minaev, “Oxidation of slag sulfur by gas phase oxygen,” in Theory and Practice of Intensification of Processes in Converters and Open-Hearth Furnaces (Metallurgiya, Moscow, 1965), pp. 134–140.

    Google Scholar 

  29. O. V. Travin, P. I. Yugov, V. M. Zhuravlev, et al., “Thermodynamics and kinetics of sulfur removal from slags to the gas phase,” in Metallurgical Methods of Improving Steel Quality (Nauka, Moscw, 1979), pp. 60–65.

  30. V. I. Kurpas and V. L. Naidek, “Features of oxidizing and reducing refining waste steelmaking slags,” Metall Lit’e Ukrainy, No. 4 (215), 18–20 (2011).

    Google Scholar 

  31. Yu. V. Latash and B. I. Medovar, Electroslag Remelting (Metallurgiya, Moscow, 1970).

    Google Scholar 

  32. W. E. Duckworth and J. Hoyle, Electroslag Remelting (Metallurgiya, Moscow, 1973).

    Google Scholar 

  33. R. H. Nafziger, A. Mitchell, R. L. Lincoln, et al., The Electroslag Melting Process (Bulletin 669) (United States Bureau of Mines, Washington, 1976).

    Google Scholar 

  34. I. D. Sommerville, “Measurement, forecast, and application of metallurgical slag tanks,” in Injection Metallurgy’86 (Metallurgiya, Moscow, 1990), pp. 107–120.

    Google Scholar 

  35. M. A. T. Andersson, P. G. Jönsson, and M. M. Nzotta, “Application of the sulphide capacity concept on high-basicity ladle slags used in bearing-steel production,” ISIJ Int. 39 (11), 1140–1149 (1999).

    Article  CAS  Google Scholar 

  36. V. A. Grigoryan, A. Ya. Stomakhin, A. G. Ponomarenko, et al., Physicochemical Calculations of Electric Steelmaking Processes: Collection of Problems with Solutions, 2nd ed. (Izd. MISiS, Moscow, 2007).

  37. B. G. Trusov, Simulation of Chemical and Phase Equilibria at High Temperatures: Certificate of State Registration of a Computer Program 920054 RF (MGTU, RosAPO, Moscow, 1992).

  38. G. V. Belov and B. G. Trusov, Thermodynamic Simulation of Chemically Reacting Systems (Izd. MVTU, Moscow, 2013).

    Google Scholar 

  39. B. G. Trusov, Description of Thermodynamic Programs for Calculating the Compositions of Arbitrary Heterogeneous Systems and Their Thermodynamic and Transport Properties Izd. MVTU, Moscow, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Safonov or E. L. Korzun.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonov, V.M., Murysev, V.A., Korzun, E.L. et al. Deep Steel Desulfurization during Chamber Degassing. Russ. Metall. 2021, 874–882 (2021). https://doi.org/10.1134/S0036029521070120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521070120

Keywords:

Navigation