Skip to main content
Log in

Changes in the Structural-Phase State and Mechanical Properties of Ni3Al–Ni–NiAl Cast Alloys Containing Chromium, Molybdenum, Tungsten, Rhenium, and Cobalt after Heat Treatment

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The influence of the temperature–time parameters (temperature from 1000 to 1300°C, time from 1 to 500 h) of heat treatment (HT) of 〈001〉 and 〈111〉 single crystals of boron-free heterophase γ'-Ni3Al + γ‑Ni intermetallic (IM) alloys of the Ni–Al–Cr–Mo–W–Ti(Zr)–La system (VKNA-1V) and such alloys with cobalt and rhenium (VKNA-25) on their structure, fracture, and short-term and long-term strength is studied. The introduction of cobalt and rhenium or an increase in the cooling rate of the 〈001〉 single crystals in the range 30–300°C/min is found to decrease the sizes of the structural components of all levels. In addition, the rule derived for two- and three-component nickel-based alloys is shown to be valid for γ'-Ni3Al-based IM alloys: if an introduced alloying element (AE) increases the melting point Tm of the base metal (nickel), the AE distribution coefficient is kd > 1 and the AE enriches dendrite arms; if AE decreases Tm of nickel, we have kd < 1 and the AE enriches the interdendritic space. The AE dendritic microsegregation coefficients kd weakly depend on the cooling rate during solidification, and their values decrease in the following row: Re, W, Co, Mo, Al, and Ti. An increase in the time of low-temperature HT (T < Tsolvus) or an increase in the HT temperature to TsolvusTTsolidus leads to the “homogenization” of heterophase γ' + γ IM alloys. The dendritic microsegregation coefficients of all AEs except for Re approach unity, and interdendritic nonequilibrium \(\gamma _{{{\text{pr}}}}^{'}\) and γ' + β precipitates disappear. A homogeneous γ' + γ structure, which is characteristic of IM dendrites (γ'-phase regions of irregular shape separated by continuous or discontinuous γ-phase layers), forms. It differs from the structure of nickel superalloys. This type of homogenization decreases the durability as compared to the as-cast material, which retains the maximum microsegregation heterogeneity after short-term HT in order to relieve casting stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2008).

    Google Scholar 

  2. T. Sims, S. Stoloff, and C. Hagel, Superalloys II: High-Temperature Materials for Aerospace and Industrial Power (New York, 1987).

  3. E. N. Kablov and E. R. Golubovskii, Heat Resistance of Nickel Alloys (Mashinostroenie, Moscow, 1998).

    Google Scholar 

  4. E. N. Kablov, N. E. Petrushin, and I. L. Svetlov, “Modern cast high-temperature nickel alloys,” in Proceedings of Conference Dedicated to the 100th Anniversary of the Birth of S.T. Kishkin (VIAM, Moscow, 2006), pp. 39–55.

  5. Cast Blades of Gas Turbine Engines: Alloys, Technology, Coatings, Ed. by E. N. Kablov (Nauka, Moscow, 2006).

    Google Scholar 

  6. E. N. Kablov, B. S. Lomberg, V. P. Buntushkin, E. P. Golubovskii, and S. A. Muboyadzhyan, “Intermetallic Ni3Al-base alloy: a promising material for turbine blades,” Metal Sci. Heat Treat. 44 (7–8), 284–287 (2002).

  7. K. B. Povarova, N. K. Kazanskaya, V. P. Buntushkin, V. G. Kostogryz, V. G. Bakharev, V. I. Mironov, O. A. Bazyleva, A. A. Drozdov, and I. O. Bannykh, “Thermal structural stability of an Ni3Al-based alloy and its application for blades in small gas-turbine engines,” Russ. Metall. (Metally), No. 3, 269–274 (2003).

  8. K. B. Povarova, A. A. Drozdov, V. P. Buntushkin, N. K. Kazanskaya, and O. A. Bazyleva, “Ultralight heat-resistant nanostructured alloys based on Ni3Al for aircraft engine building and power engineering,” Vopr. Materialoved., No. 2 (54), 85–93 (2008).

  9. N. A. Nochovnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Alloys Based on Titanium and Nickel, Ed. by E. N. Kablov (VIAM, Moscow, 2018).

    Google Scholar 

  10. S. M. Seo, J. H. Lee, Y. S.Yoo, Jo. H. Miyahara, and R. Ogi, “A comparative study of the γ/γ' eutectic evolution during the solidification of Ni-base superalloys,” Met. Mater. Trans. A 42, 3150–3159 (2011).

    Article  CAS  Google Scholar 

  11. H. T. Pang, H. B. Dong, R. Beanland, H. J. Stone, C. M. F. Rae, P. A. Midgley, G. Brewster, and N. D’Souza, “Microstructure and solidification sequence of the interdendritic region in a third generation single-crystal nickel-base superalloy,” Met. Mater. Trans. A 40, 1660–1669 (2009).

    Article  Google Scholar 

  12. N. S. Stoloff, “Physical and mechanical metallurgy of Ni3Al and its alloys,” Int. Mater. Rev. 34 (1), 150–183 (1989).

    Article  Google Scholar 

  13. M. Nazmy and M. Staubli, “Aspects of mechanical behaviour of directional solidified Ni3Al intermetallics,” Scr. Metall. 25 (6), 1305–1308 (1991).

    Article  CAS  Google Scholar 

  14. D. J. Alexander and V. R. Sicca, “Mechanical properties of advanced nickel aluminides,” Mater. Sci. Eng. A 152, 114–119 (1992).

    Article  Google Scholar 

  15. C. T. Liu, “Ni3Al aluminide alloys,” in Structural Intermetallics, Ed. by R. Darolia, J. J. Lewandowski, et al. (Miner. Metals Mater. Soc., 1993), pp. 365–377.

    Google Scholar 

  16. K. Aoki and O. Izumi, J. Jap. Inst. Met. 43, 1190 (1979).

    Article  CAS  Google Scholar 

  17. Y. F. Han, S. H. Li, and V. C. Chaturvedi, “Microstructural stability of the directionally solidified γ'-base superalloy IC6,” Mater. Sci. Eng. 160, 271–276 (1993).

    Article  Google Scholar 

  18. V. P. Buntushkin, O. A. Bazyleva, K. B. Povarova, and N. K. Kazanskaya, “Effect of structure on the mechanical properties of alloyed Ni3Al intermetallic compound,” Metals, No. 3, 74–80 (1995).

    Google Scholar 

  19. Intermetallic Alloy Development. A Program Evaluation Panel of Intermetallic Alloy Development Committee on Industrial Technology Assessments, National Materials Advisory Board. Commission on Engineering and Technical Systems. National Research Council. Publ. NMAB-487-1 (National Academy Press, Washington, 1997).

  20. K. B. Povarova and O. A. Bannykh, “Principles of creating structural alloys based on intermetallics,” Materialoved., No. 2, 27–33 (1999); No. 3, 29–37 (1999).

  21. K. B. Povarova, A. A. Drozdov, O. A. Bazyleva, M. A. Bulakhtina, A. E. Morozov, A. V. Antonova, E. G. Arginbayeva, and Yu. V. Loshchinin “Solidification and structure-phase state of Ni3Al–Ni–NiAl alloys with chromium, molybdenum, tungsten, rhenium, and cobalt,” Russ. Metall. (Metally), No. 5, 540–548 (2020).

  22. Ai Cheng, Xinbao Zhao, Lei Liu, Heng Zhang, Yi Ru, Yanling Pei, Jian Zhou, Shusuo Li, and Shengkai Gong, “Influence of withdrawal rate on last solidification path of a Mo-rich Ni3Al based single crystal superalloy,” J. Alloys Comp. 623, 362–366 (2015).

    Article  Google Scholar 

  23. Y. F. Han and C. B. Xiao, “Effect of yttrium on microstructure and properties of Ni3Al base alloy IC6,” Intermetallics 8 (6), 687–691 (2000).

    Article  CAS  Google Scholar 

  24. Y. Cheng, H. Zhang, L. W. Song, et al., “Effect of Re element on oxidation resistance of Ni3Al–Mo based alloys at 1150°C,” Trans. Nonfer. Metal Soc. China 22 (3), 510–515 (2012).

    Article  Google Scholar 

  25. Academic Committee of the Superalloys CSM. China Superalloys Handbook (Book 2) (China Quality and Standards Publ., Beijing, 2012).

  26. Xiong Yue, Fengmei Liu, Qi Li, Hongbo Qin, Haitao Gao, Likun Li, and Yaoyong Yi, “Effect of post-bond heat treatment on microstructure and mechanical properties of the wide gap TLP bonded IC10 superalloy with a low boron Ni3Al-based interlayer,” J. Manufact. Proc. 54, 109–119 (2020).

    Article  Google Scholar 

  27. Shuaiqi Zhang, Zhongxue Yang, Ruisong Jiang, Qichao Jin, Qiang Zhang, and Wenhu Wang, “Effect of creep feed grinding on surface integrity and fatigue life of Ni3Al based superalloy IC10,” Chin. J. Aeronaut. 34 (1), 438–448 (2020).

    Article  Google Scholar 

  28. Jing Wu, Chong Li, Liu Yongchang, Xia Xingchuan, Zixiang Zheng, and Haipeng Wang, “Precipitation of intersected plate-like γ' phase in β and its effect on creep behavior of multiphase Ni3Al-based intermetallic alloy,” Mater. Sci. Eng. A 767, 138439 (2019).

    Article  CAS  Google Scholar 

  29. Jing Wu, Chong Li, Yongchang Liua, Xingchuan Xia, Yuting Wu, Zongqing Ma, and Haipeng Wang, “Influences of solution cooling rate on microstructural evolution of a multiphase Ni3Al-based intermetallic alloy,” Intermetallics 109, 48–59 (2019).

    Article  CAS  Google Scholar 

  30. K. B. Povarova, A. A. Drozdov, Yu. A. Bondarenko, O. A. Bazyleva, M. A. Bulakhtina, A. E. Morozov, and A. V. Antonova, “Effect of directional solidification on the structure and properties of Ni3Al-based alloy single crystals alloyed with W, Mo, Cr, and REM,” Russ. Metall. (Metally), No. 7, 532–536 (2014).

  31. K. B. Povarova, Yu. A. Bondarenko, A. A. Drozdov, O. A. Bazyleva, A. V. Antonova, A. E. Morozov, and E. G. Arginbayeva, “Effect of directional solidification on the structure and properties of Ni3Al-based alloy single crystals alloyed with Cr, Mo, W, Ti, Co, Re, and REM,” Russ. Metall. (Metally), No. 1, 43–50 (2015).

  32. K. B. Povarova, O. A. Bazyleva, A. A. Drozdov, A. E. Morozov, E. G. Arginbaeva, and A. V. Antonova, “Effect of heat treatment on dendritic segregation and high-temperature strength of single crystals of Ni3Al-base rhenium-alloyed intermetallic alloys”, Metal Sci. Heat Treat. 60 (9–10), 594–601 (2019).

  33. A. A. Drozdov, K. B. Povarova, A. E. Morozov, A. V. Antonova, and M. A. Bulakhtina, “Dendrite segregation in Ni3Al-based intermetallic single crystals alloyed with Cr, Mo, W, Ti, Co, and Re,” Russ. Metall. (Metally), No. 7, 551–557 (2015).

  34. Ai Cheng, Li Shusuo, Heng Zhang, Lei Liu, Yue Ma, Yanling Pei, and Shengkai Gong, “Effect of withdrawal rate on microstructure and lattice misfit of a Ni3Al based single crystal superalloy,” J. Alloys Comp. 592 (15 April), 164–169 (2014).

  35. O. A. Bazyleva, K. B. Povarova, E. G. Arginbaeva, A. V. Shestakov, and A. A. Drozdov, “Influence of the solidification temperature–time parameters on the structure and mechanical properties of nickel aluminide-based alloys,” Russ. Metall. (Metally), No. 11, 916–922 (2015).

  36. O. A. Bazyleva, A. Bondarenko, O. B. Timofeeva, and A. N. Afanas’ev-Khodykin, “Effect of annealing and high-temperature heating in soldering on the structure and mechanical properties of a nickel aluminide–based alloy,” Materialoved., No. 3, 15–20 (2014).

  37. Li Ping, Li Shu-Suo, and Han Ya-Fang, “Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX,” Intermetallics 19, 182–186 (2011).

    Article  Google Scholar 

  38. B. A. Grinberg and M. A. Ivanov, Ni 3 Al and TiAl Intermetallics: Microstructure and Deformation Behavior (IFM URO RAS, Yekaterinburg, 2002).

    Google Scholar 

Download references

Funding

This work was performed according to state assignment no. 075-00746-19-00 and was supported by the Russian Foundation for Basic Research (project no. 19-03-00852_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Povarova.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povarova, K.B., Drozdov, A.A., Bazyleva, O.A. et al. Changes in the Structural-Phase State and Mechanical Properties of Ni3Al–Ni–NiAl Cast Alloys Containing Chromium, Molybdenum, Tungsten, Rhenium, and Cobalt after Heat Treatment. Russ. Metall. 2021, 842–855 (2021). https://doi.org/10.1134/S0036029521070090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521070090

Keywords:

Navigation