Skip to main content
Log in

Deformation- and Thermal-Cycle Resistance of Titanium Nickelide-Based Alloys

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The deformation- and thermal-cycle resistance of titanium nickelide-based alloys is considered. We proposed to estimate these characteristics using both fracture and the degradation of the functional characteristics of the material (shape recovery temperature, unrecoverable strain, etc.). The functional characteristics are found to be determined by the critical stresses and strains of the material, which depend on its structure and the test temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. S. Zolotorevskii, Mechanical Properties of Metals: Textbook for Universities, 2nd ed. (Metallurgiya, Moscow, 1983).

    Google Scholar 

  2. R. Landgraf, “The resistance of metals to cyclic deformation,” in Achievement of High Fatigue Resistance in Metals and Alloys (Amer. Soc. Test. Mater., 1970), pp. 3–36.

    Google Scholar 

  3. B. Farahmand, G. Bockrath, and J. Glassco, Fatigue and Fracture Mechanics of High Risk Parts: Application of LEFM & FMDM Theory (Springer, 1997).

    Book  Google Scholar 

  4. L. Lecce and A. Concilio, Shape Memory Alloy Engineering for Aerospace, Structural and Biomedical Applications (Elsevier, 2015).

    Google Scholar 

  5. K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci., No. 5(50), 511–678 (2005).

  6. H. A. Mohamed and J. Washburn, “Deformation behaviour and shape memory effect of near equiatomic NiTi alloy,” J. Mater. Sci. 12, 469–480 (1977).

    Article  CAS  Google Scholar 

  7. K. N. Melton and O. Mercier, “Deformation behavior of NiTi-based alloys,” Met. Trans. A 9, 1487–1488 (1978).

    Article  Google Scholar 

  8. J. X. Zhang, M. Sato, and A. Ishida, “Deformation mechanism of martensite in Ti-rich Ti–Ni shape memory alloy thin films,” Acta Materialia 54, 1185–1198 (2006).

    Article  CAS  Google Scholar 

  9. A. Lotkov, V. Grishkov, V. Timkin, A. Baturin, and D. Zhapova, “Yield stress in titanium nickelide-based alloys with thermoelastic martensitic transformations,” Mater. Sci. Eng. A 744, 74–78 (2019).

    Article  CAS  Google Scholar 

  10. S. W. Robertson, A. R. Pelton, and R. O. Ritchie, “Mechanical fatigue and fracture of Nitinol,” Int. Mater. Rev. 57 (1), 1–36 (2012).

    Article  CAS  Google Scholar 

  11. O. Benafan, J. Brown, and F. T. Calkins, “Shape memory alloy actuator design: CASMART collaborative best practices and case studies,” Int. J. Mech. Mater. Des. 10, 1–42 (2014).

    Article  Google Scholar 

  12. M. Yu. Kollerov, A. A. Ilyin, D. E. Gusev, and D. A. Lamzin “Effect of deformation mechanisms on the fatigue properties of metallic materials,” Metally, No. 5, 72–79 (2008).

    Google Scholar 

  13. V. E. Gunter, A. N. Matyunin, and L. A. Monasevich, “Deformational cyclic resistance of medical shape memory alloys,” Implanty Pamyat’yu Formy, No. 1, 42–44 (1993).

    Google Scholar 

  14. V. E. Gunter, V. N. Khodorenko, Yu. F. Yasenchuk, et al., Titanium Nickelide. Next-Generation Medical Material (Izd. MITs, Tomsk, 2006).

  15. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, “Structural and functional fatigue of NiTi shape memory alloys,” Mater. Sci. Eng. A 378, 24–33 (2004).

    Article  Google Scholar 

  16. D. C. Lagoudas, D. A. Miller, L. Rong, and P. K. Kumar, “Thermomechanical fatigue of shape memory alloys,” Smart Mater. Struct. 18, 085021–085033 (2009).

    Article  Google Scholar 

  17. M. Yu. Kollerov and A. A. Il’in, “Production and application of biologically and mechanically compatible implants made of titanium nickelide,” Titan, No. 1 (59), 47–54 (2018).

    Google Scholar 

  18. T. Yoneyama and S. Mayazaki, Shape Memory Alloys for Biomedical Applications (Woodhead Publ. Ltd., 2009).

    Book  Google Scholar 

  19. E. A. Lukina, “The influence of anodic oxidation on NiTi/Ti6Al4V fretting corrosion behavior,” J. Phys.: Conf. Ser. 1396 (1), 012030 (2019).

    CAS  Google Scholar 

  20. R. Ashwin, A. R. Srinivasa, and J. N. Reddy, Design of Shape Memory Alloy (SMA) Actuators (Springer, 2015).

    Google Scholar 

  21. K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Progr. Mater. Sci., No. 5 (50), 511–678 (2005).

  22. D. E. Gusev, M. Yu. Kollerov, and R. E. Vinogradov, “Effect of structure and test conditions on the critical strains and stresses in titanium nickelide-based alloys,” Deform. Razrushenie Mater., No. 7, 17–23 (2018).

  23. A. Stebner, S. Padula, R. Noebe, B. Lerch, and D. Quinn, “Development, characterization, and design considerations of Ni19.5Ti50.5Pd25Pt5 high-temperature shape memory alloy helical actuators,” J. Intel. Mater. Sys. Struct. 20 (17), 2107–2126 (2009).

    Article  CAS  Google Scholar 

  24. Physical Metallurgy, Ed. by R. W. Cahn and P. T. Haasen (Metallurgiya, Moscow, 1987), Vol. 2.

    Google Scholar 

  25. D. Norfleet, P. Sarosi, S. Manchiraju, M. Wagner, M. Uchic, P. Anderson, and M. Mills, “Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals,” Acta Materialia 57 (12), 3549–3561 (2009).

    Article  CAS  Google Scholar 

  26. T. Simon, A. Kroger, C. Somsen, A. Dlouhy, and G. Eggeler, “On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys,” Acta Materialia 58, 1850–1860 (2010).

    Article  CAS  Google Scholar 

  27. R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers, “Electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires,” Int. J. Plast. 27, 282–297 (2011).

    Article  CAS  Google Scholar 

  28. E. Hornbogen, “Review of thermo-mechanical fatigue of shape memory alloys,” J. Mater. Sci. 39, 385–399 (2004).

    Article  CAS  Google Scholar 

  29. M. Kollerov, E. Lukina, D. Gusev, P. Mason, and P. Wagstaff, “Impact of material structure on the fatigue behavior of NiTi leading to a modified Coffin–Manson equation,” Mater. Sci. Eng. A 585, 356–362 (2013).

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of the basic part of the state assignment for higher education institutions no. FSFF-2020-0017 using the equipment of the resource center Aerospace Materials and Technologies of the Moscow Aviation Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kollerov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kollerov, M.Y., Gusev, D.E. & Vinogradov, R.E. Deformation- and Thermal-Cycle Resistance of Titanium Nickelide-Based Alloys. Russ. Metall. 2021, 856–863 (2021). https://doi.org/10.1134/S0036029521070041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521070041

Keywords:

Navigation