Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Smart polymer chemosensors: signal-amplification systems with allosterism

Abstract

Supramolecular chemical sensing with chemosensors has attracted considerable attention over the past two decades, and today, its technology has been used for the detection of explosives, environmentally hazardous vapors, and important biorelated molecules to the human body. Of particular, the use of polymers is indispensable for the development of chemosensors for applications since inventive polymers are capable of amplifying signals and/or binding information upon complexation of an analyte with a chemosensor. Naturally, such amplification enables us to sense a very small amount of target analytes in a complex mixture. Very recently, the author proposed a novel amplification-sensing mechanism, which is called “supramolecular allosteric signal-amplification sensing” (SASS), and has expanded to various systems that are difficult to detect by using common nonamplification or “the lock-and-key concept”-based chemosensors. In this review, the author wants to present the concept and strategy of the SASS and the related examples. The methodology proposed and the results obtained herein will further encourage the research community in the fields of polymer, supramolecular, and analytical chemistry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hartley JH, James TD, Ward CJ. Synthetic receptors. J Chem Soc Perkin Trans. 2000;1:3155–84.

    Article  Google Scholar 

  2. Takeuchi M, Ikeda M, Sugasaki A, Shinkai S. Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. Acc Chem Res. 2001;34:865–73.

    Article  CAS  PubMed  Google Scholar 

  3. Bell TW, Hext NM. Supramolecular optical chemosensors for organic analytes. Chem Soc Rev. 2004;33:589–98.

    CAS  PubMed  Google Scholar 

  4. Wang B, Anslyn EV, editors. Chemosensors: principles, strategies, and applications. Hoboken: Wiley; 2011.

    Google Scholar 

  5. Ghale G, Nau WM. Dynamically analyte-responsive macrocyclic host-fluorophore systems. Acc Chem Res. 2014;47:2150–59.

    Article  CAS  PubMed  Google Scholar 

  6. Schroeder V, Savagatrup S, He M, Lin S, Swager TM. Carbon nanotube chemical sensors. Chem Rev. 2019;119:599–663.

    Article  CAS  PubMed  Google Scholar 

  7. Fukuhara G. Analytical supramolecular chemistry: colorimetric and fluorimetric chemosensors. J Photochem Photobiol C 2020;42:100340.

    Article  CAS  Google Scholar 

  8. Brzechwa-Chodzyńska A, Drożdż W, Harrowfield J, Stefankiewicz AR. Fluorescent sensors: a bright future for cages. Coord Chem Rev. 2021;434:213820.

    Article  Google Scholar 

  9. Toal SJ, Trogler WC. Polymer sensors for nitroaromatic explosives detection. J Mater Chem. 2006;16:2871–83.

    Article  CAS  Google Scholar 

  10. Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parra M, Gil S. Optical chemosensors and reagents to detect explosives. Chem Soc Rev. 2012;41:1261–96.

    Article  CAS  PubMed  Google Scholar 

  11. Chen L, Wu D, Yoon J. Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sens. 2018;3:27–43.

    Article  CAS  PubMed  Google Scholar 

  12. Andón FT, Fadeel B. Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials. Acc Chem Res. 2013;46:733–42.

    Article  PubMed  Google Scholar 

  13. Singh K, Rotaru AM, Beharry AA. Fluorescent chemosensors as future tools for cancer biology. ACS Chem Biol. 2018;13:1785–98.

    Article  CAS  PubMed  Google Scholar 

  14. Djago F, Lange J, Poinot P. Induced volatolomics of pathologies. Nat Rev Chem. 2021;5:183–96.

    Article  CAS  Google Scholar 

  15. Lehn JM. Supramolecular chemistry‒scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew Chem Int Ed Engl. 1988;27:89–112.

    Article  Google Scholar 

  16. Cram DJ. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew Chem Int Ed Engl. 1988;27:1009–20.

    Article  Google Scholar 

  17. Pedersen CJ. The discovery of crown ethers (Nobel Lecture). Angew Chem Int Ed Engl. 1988;27:1021–27.

    Article  Google Scholar 

  18. Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science 2012;335:813–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lossada F, Hoenders D, Guo J, Jiao D, Walther A. Self-assembled bioinspired nanocomposites. Acc Chem Res. 2020;53:2622–35.

    Article  CAS  PubMed  Google Scholar 

  20. Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev. 2021;50:5165–200.

    Article  CAS  PubMed  Google Scholar 

  21. Feringa BL. The art of building small: from molecular switches to motors (Nobel Lecture). Angew Chem Int Ed. 2017;56:11060–78.

    Article  CAS  Google Scholar 

  22. Sauvage JP. From chemical topology to molecular machines (Nobel Lecture). Angew Chem Int Ed. 2017;56:11080–93.

    Article  CAS  Google Scholar 

  23. Stoddart JF. Mechanically interlocked molecules (MIMs)‒molecular shuttles, switches, and machines (Nobel Lecture). Angew Chem Int Ed. 2017;56:11094–125.

    Article  CAS  Google Scholar 

  24. Fischer E. Influence of configuration on the action of enzymes. Ber Dtsch Chem Ges. 1894;27:2985–93.

    Article  CAS  Google Scholar 

  25. McDonald KP, Hua Y, Lee S, Flood AH. Shape persistence delivers lock-and-key chloride binding in triazolophanes. Chem Commun. 2012;48:5065–75.

    Article  CAS  Google Scholar 

  26. Schneider HJ. Limitations and extensions of the lock-and-key principle: differences between gas state, solution and solid state structures. Int J Mol Sci. 2015;16:6694–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985;230:1350–54.

    Article  CAS  PubMed  Google Scholar 

  28. Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A, Srivastava AK, Khan R. SERS based lateral flow immunoassay for point-of-care detection of SARS-CoV-2 in clinical samples. ACS Appl Bio Mater. 2021;4:2974–95.

    Article  CAS  Google Scholar 

  29. Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano. 2021;15:3593–611.

    Article  CAS  PubMed  Google Scholar 

  30. Leffler JE. The enthalpy-entropy relationship and its implications for organic chemistry. J Org Chem. 1955;20:1202–31.

    Article  CAS  Google Scholar 

  31. Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:1875–917.

    Article  CAS  PubMed  Google Scholar 

  32. Ford DM. Enthalpy-entropy compensation is not a general feature of weak association. J Am Chem Soc. 2005;127:16167–70.

    Article  CAS  PubMed  Google Scholar 

  33. Fukuhara G. Polymer-based supramolecular sensing and application to chiral photochemistry. Polym J. 2015;47:649–55.

    Article  CAS  Google Scholar 

  34. Fukuhara G. Allosteric signal-amplification sensing with polymer-based supramolecular hosts. J Incl Phenom Macrocycl Chem. 2019;93:127–43.

    Article  CAS  Google Scholar 

  35. Monod J, Changeux JP, Jacob F. Allosteric proteins and cellular control systems. J Mol Biol. 1963;6:306–29.

    Article  CAS  PubMed  Google Scholar 

  36. Kobe B, Kemp BE. Active site-directed protein regulation. Nature. 1999;402:373–76.

    Article  CAS  PubMed  Google Scholar 

  37. Whitty A. Cooperativity and biological complexity. Nat Chem Biol. 2008;4:435–9.

    Article  CAS  PubMed  Google Scholar 

  38. Williamson JR. Cooperativity in macromolecular assembly. Nat Chem Biol. 2008;4:458–65.

    Article  CAS  PubMed  Google Scholar 

  39. Shinkai S, Ikeda M, Sugasaki A, Takeuchi M. Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity and selectivity. Acc Chem Res. 2001;34:494–503.

    Article  CAS  PubMed  Google Scholar 

  40. Kovbasyuk L, Krämer R. Allosteric supramolecular receptors and catalysts. Chem Rev. 2004;104:3161–87.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu L, Anslyn EV. Signal amplification by allosteric catalysis. Angew Chem Int Ed. 2006;45:1190–96.

    Article  CAS  Google Scholar 

  42. Oliveri CG, Ulmann PA, Wiester MJ, Mirkin CA. Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction. Acc Chem Res. 2008;41:1618–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hunter CA, Anderson HL. What is cooperativity? Angew Chem Int Ed. 2009;48:7488–99.

    Article  CAS  Google Scholar 

  44. Zhou Q, Swager TM. Fluorescent chemosensors based on energy migration in conjugated polymers: the molecular wire approach to increased sensitivity. J Am Chem Soc. 1995;117:12593–602.

    Article  CAS  Google Scholar 

  45. Conners KA. Binding constants. New York, NY: Wiley; 1987.

    Google Scholar 

  46. Marsella MJ, Swager TM. Designing conducting polymer-based sensors: selective ionochromic response in crown ether containing polythiophenes. J Am Chem Soc. 1993;115:12214–15.

    Article  CAS  Google Scholar 

  47. Fukuhara G, Inoue Y. Chirality-sensing binaphthocrown ether-polythiophene conjugate. Chem Eur J 2010;16:7859–64.

    Article  CAS  PubMed  Google Scholar 

  48. Fukuhara G, Inoue Y. Chirality sensing by a fluorescent binaphthocrown ether-polythiophene conjugate. Chem Commun. 2012;48:1641–43.

    Article  CAS  Google Scholar 

  49. Fukuhara G, Inoue Y. Peptide chirality sensing by a cyclodextrin-polythiophene conjugate. Chem Eur J 2012;18:11459–64.

    Article  CAS  PubMed  Google Scholar 

  50. Tsuchiya T, Fukuhara G. Allosteric signal amplification sensing using a bisthiourea‒binaphthyl‒polythiophene conjugate: a positive homotropic allosterism case. J Org Chem. 2020;85:13239–45.

    Article  CAS  PubMed  Google Scholar 

  51. James TD, Sandanayake KRAS, Shinkai S. Saccharide sensing with molecular receptors based on boronic acid. Angew Chem Int Ed Engl. 1996;35:1910–22.

    Article  Google Scholar 

  52. Davis AP. Synthetic lectins. Org Biomol Chem. 2009;7:3629–38.

    Article  CAS  PubMed  Google Scholar 

  53. Mazik M. Molecular recognition of carbohydrates by acyclic receptors employing noncovalent interactions. Chem Soc Rev. 2009;38:935–56.

    Article  CAS  PubMed  Google Scholar 

  54. Wu X, Li Z, Chen XX, Fossey JS, James TD, Jiang YB. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem Soc Rev. 2013;42:8032–48.

    Article  CAS  PubMed  Google Scholar 

  55. Renney CM, Fukuhara G, Inoue Y, Davis AP. Binding or aggregation? Hazards of interpretation in studies of molecular recognition by porphyrins in water. Chem Commun. 2015;51:9551–4.

    Article  CAS  Google Scholar 

  56. James TD, Sandanayake KRAS, Shinaki S. Chiral discrimination of monosaccharides using a fluorescent molcular sensor. Nature 1995;374:345–7.

    Article  CAS  Google Scholar 

  57. Samoei GK, Wang W, Escobedo JO, Xu X, Schneider HJ, Cook RL, Strongin RM. A chemomechanical polymer that functions in blood plasma with high glucose selectivity. Angew Chem Int Ed. 2006;45:5319–22.

    Article  CAS  Google Scholar 

  58. Schiller A, Wessling RA, Singaram B. A fluorescent sensor array for saccharides based on boronic acid appended bipyridinium salts. Angew Chem Int Ed. 2007;46:6457–9.

    Article  CAS  Google Scholar 

  59. Yashima E, Nimura T, Matsushima T, Okamoto Y. Poly((4-dihydroxyborophenyl)acetylene) as a novel probe for chirality and structural assignments of various kinds of molecules including carbohydrates and steroids by circular dichroism. J Am Chem Soc. 1996;118:9800–1.

    Article  CAS  Google Scholar 

  60. Mooibroek TJ, Casas-Solvas JM, Harniman RL, Renney CM, Carter TS, Crump MP, Davis AP. A threading receptor for polysaccharides. Nat Chem. 2016;8:69–74.

    Article  CAS  PubMed  Google Scholar 

  61. Ogawa K, Miyagi M, Fukumoto T, Watanabe T. Effect of 2-chloroethanol, dioxane, or water on the conformation of a gel-forming β-1,3-D-glucan in DMSO. Chem Lett. 1973;2:943–6.

    Article  Google Scholar 

  62. Yanaki T, Norisuye T, Fujita H. Triple helix of Schizophyllum commune polysaccharides in dilute solution. 3. Hydrodynamic properties in water. Macromolecules 1980;13:1462–6.

    Article  CAS  Google Scholar 

  63. Deslandes Y, Marchessault RH, Sarko A. Triple-helical structure of (1→3)-β-D-glucan. Macromolecules 1980;13:1466–71.

    Article  CAS  Google Scholar 

  64. Numata M, Shinkai S. ‘Supramolecular wrapping chemistry’ by helix-forming polysaccharides: a powerful strategy for generating diverse polymeric nano-architectures. Chem Commun. 2011;47:1961–75.

    Article  CAS  Google Scholar 

  65. Sakurai K, Shinkai S. Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide: schizophyllan. J Am Chem Soc. 2000;122:4520–1.

    Article  CAS  Google Scholar 

  66. Fukuhara G, Inoue Y. Oligosaccharide sensing with chromophore-modified curdlan in aqueous media. Chem Commun. 2010;46:9128–30.

    Article  CAS  Google Scholar 

  67. Harada N, Nakanishi K. Circular dichroic spectroscopy‒exciton coupling in organic stereochemistry. Mill Valley: University Science Books; 1983.

    Google Scholar 

  68. Eleftheriadou I, Grigoropoulou P, Katsilambros N, Tentolouris N. The effects of medications used for the management of diabetes and obesity on postprandial lipid metabolism. Curr Diabetes Rev. 2008;4:340–56.

    Article  CAS  PubMed  Google Scholar 

  69. Fukuhara G, Inoue Y. Highly selective oligosaccharide sensing by a curdlan-polythiophene hybrid. J Am Chem Soc. 2011;133:768–70.

    Article  CAS  PubMed  Google Scholar 

  70. Fukuhara G, Imai M, Fuentealba D, Ishida Y, Kurohara H, Yang C, Mori T, Uyama H, Bohne C, Inoue Y. Electrostatically promoted dynamic hybridization of glucans with cationic polythiophene. Org Biomol Chem. 2016;14:9741–50.

    Article  CAS  PubMed  Google Scholar 

  71. Tamano K, Nakasha K, Iwamoto M, Numata M, Suzuki T, Uyama H, Fukuhara G. Chiroptical properties of reporter-modified or reporter-complexed highly 1,6-glucose-branched β-1,3-glucan. Polym J. 2019;51:1063–71.

    Article  CAS  Google Scholar 

  72. Fukuhara G, Sasaki M, Numata M, Mori T, Inoue Y. Oligosaccharide sensing in aqueous media by porphyrin-curdlan conjugates: a prêt-á-porter rather than haute-couture approach. Chem Eur J 2017;23:11272–8.

    Article  CAS  PubMed  Google Scholar 

  73. Sasaki M, Ryoson Y, Numata M, Fukuhara G. Oligosaccharide sensing in aqueous media using porphyrin-curdlan conjugates: an allosteric signal-amplification system. J Org Chem. 2019;84:6017–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to all the collaborators (see the literatures in Fukuhara et al.) developed the studies introduced in this review and generous financial support and appreciates Ms. Yuki Fukuhara for her assistance in the preparation of this review.

Author information

Authors and Affiliations

Authors

Contributions

G.F. prepared and revised this review.

Corresponding author

Correspondence to Gaku Fukuhara.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuhara, G. Smart polymer chemosensors: signal-amplification systems with allosterism. Polym J 53, 1325–1334 (2021). https://doi.org/10.1038/s41428-021-00547-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00547-2

Search

Quick links