Skip to main content

Advertisement

Log in

Virulence Factors and Azole-Resistant Mechanism of Candida Tropicalis Isolated from Candidemia

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Background

Limited knowledge exists on the virulence factors of Candida tropicalis and the mechanisms of azole resistance that lead to an intensified pathogenicity and treatment failure. We aimed to evaluate the virulence factors and molecular mechanisms of azole resistance among C. tropicalis isolated from patients with candidemia.

Materials and Methods

Several virulence factors, including extracellular enzymatic activities, cell surface hydrophobicity (CSH), and biofilm formation, were evaluated. Antifungal susceptibility pattern and expression level of ERG11, UPC2, MDR1, and CDR1 genes of eight (4 fluconazole resistance and 4 fluconazole susceptible) clinical C. tropicalis isolates were assessed. The correlation between the virulence factors and antifungal susceptibility patterns was analyzed.

Results

During a 4 year study, forty-five C. tropicalis isolates were recovered from candidemia patients. The isolates expressed different frequencies of virulence determinants as follows: coagulase 4 (8.9%), phospholipase 5 (11.1%), proteinase 31 (68.9%), esterase 43 (95.6%), hemolysin 44 (97.8%), biofilm formation 45 (100%) and CSH 45(100%). All the isolates were susceptible to amphotericin B and showed the highest resistance to voriconazole. There was a significant positive correlation between micafungin minimum inhibitory concentrations (MICs) and hemolysin production (rs = 0.316). However, we found a negative correlation between fluconazole MICs and esterase production (rs = −0.383). We observed the high expression of ERG11 and UPC2 genes in fluconazole-resistant C. tropicalis isolates.

Conclusion

C. tropicalis isolated from candidemia patients extensively displayed capacities for biofilm formation, hemolysis, esterase activity, and hydrophobicity. In addition, the overexpression of ERG11 and UPC2 genes was considered one of the possible mechanisms of azole resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bassetti M, Merelli M, Ansaldi F, de Florentiis D, Sartor A, Scarparo C, Callegari A, Righi E. Clinical and therapeutic aspects of candidemia: a five year single centre study. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0127534.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Canela HMS, Cardoso B, Vitali LH, Coelho HC, Martinez R, da Silva Ferreira MF. Prevalence, virulence factors and antifungal susceptibility of Candida spp. isolated from bloodstream infections in a tertiary care hospital in Brazil. Mycoses. 2018. https://doi.org/10.1111/myc.12695.

    Article  PubMed  Google Scholar 

  3. Sasani E, Khodavaisy S, Rezaie S, Salehi M, Yadegari MH. The relationship between biofilm formation and mortality in patients with Candida tropicalis candidemia. Microbial Pathogenesis. 2021. https://doi.org/10.1016/j.micpath.2021.104889.

    Article  PubMed  Google Scholar 

  4. Santos ERd, Forno CFD, Hernandez MG, Kubiça TF, Venturini TP, Chassot F, Santurio JM, Alves SH. Susceptibility of Candida spp. isolated from blood cultures as evaluated using the M27–A3 and new M27–S4 approved breakpoints. Rev Inst Med Trop. 2014. https://doi.org/10.1590/S0036-46652014000600004.

    Article  Google Scholar 

  5. Ahangarkani F, Shokohi T, Rezai MS, Ilkit M, Nesheli HM, Karami H, Tamaddoni A, Alizadeh-Navaei R, Khodavaisy S, Meis JF, Badali H. Epidemiological features of nosocomial candidaemia in neonates, infants and children: a multicentre study in Iran. Mycoses. 2020. https://doi.org/10.1111/myc.13053.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Da Costa VG, Quesada RMB, Abe ATS, Furlaneto-Maia L, Furlaneto MC. Nosocomial bloodstream Candida infections in a tertiary-care hospital in South Brazil: a 4-year survey. Mycopathologia. 2014. https://doi.org/10.1007/s11046-014-9791-z.

    Article  PubMed  Google Scholar 

  7. Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front microbiol. 2015. https://doi.org/10.3389/fmicb.2015.00205.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chakrabarti A, Sood P, Rudramurthy SM, Chen S, Kaur H, Capoor M, Chhina D, Rao R, Eshwara VK, Xess I, Kindo AJ, Umabala Savio JP, Patel A, Ray U, Mohan S, Iyer R, Chander J, Arora A, Sardana R, Roy I, Appalaraju B, Sharma A, Shetty A, Khanna N, Marak R, Biswas S, Das S, Harish BN, Mendiratta JSD. Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med. 2015. https://doi.org/10.1007/s00134-014-3603-2.

    Article  PubMed  Google Scholar 

  9. Vaezi A, Fakhim H, Khodavaisy S, Alizadeh A, Nazeri M, Soleimani A, Boekhout T, Badali H. Epidemiological and mycological characteristics of candidemia in Iran: a systematic review and meta-analysis. J Mycol Med. 2017. https://doi.org/10.1016/j.mycmed.2017.02.007.

    Article  PubMed  Google Scholar 

  10. Negri M, Silva S, Henriques M, Oliveira R. Insights into Candida tropicalis nosocomial infections and virulence factors. Eur J Clin Microbiol Infect Dis. 2012. https://doi.org/10.1007/s10096-011-1455-z.

    Article  PubMed  Google Scholar 

  11. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Ng KP, Chong PP. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates. Trop. Biomed. 2013.

  12. Mattei AS, Alves SH, Severo CB, da Silva GL, de Mattos OF, Severo LC. Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans. Rev Soc Bras Med Trop. 2013. https://doi.org/10.1590/0037-8682-0045-2013.

    Article  PubMed  Google Scholar 

  13. Neji S, Hadrich I, Trabelsi H, Abbes S, Cheikhrouhou F, Sellami H, Makni F, Ayadi A. Virulence factors, antifungal susceptibility and molecular mechanisms of azole resistance among Candida parapsilosis complex isolates recovered from clinical specimens. J Biomed Sci. 2017. https://doi.org/10.1186/s12929-017-0376-2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fan X, Xiao M, Liao K, Kudinha T, Wang H, Zhang L, Hou X, Kong F, Xu Y. Notable increasing trend in azole non-susceptible Candida tropicalis causing invasive candidiasis in China (August 2009 to July 2014): molecular epidemiology and clinical azole consumption. Front microbial. 2017. https://doi.org/10.3389/fmicb.2017.00464.

    Article  Google Scholar 

  15. Fan X, Xiao M, Zhang D, Huang J-J, Wang H, Hou X, Zhang L, Kong F, Chen SC-A, Tong Z-H, Xu Y-C. Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Clin Microbiol Infect. 2019. https://doi.org/10.1016/j.cmi.2018.11.007.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang C, Dong D, Yu B, Cai G, Wang X, Ji Y, Peng Y. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother. 2013. https://doi.org/10.1093/jac/dks481.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jiang C, Ni Q, Dong D, Zhang L, Li Z, Tian Y, Peng Y. The role of UPC2 gene in azole-resistant Candida tropicalis. Mycopathologia. 2016. https://doi.org/10.1007/s11046-016-0050-3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arastehfar A, Daneshnia F, Hafez A, Khodavaisy S, Najafzadeh M-J, Charsizadeh A, Zarrinfar H, Salehi M, Shahrabadi ZZ, Sasani E, Zomorodian K, Pan W, Hagen F, Ilkit M, Kostrzewa M, Boekhout T. Antifungal susceptibility, genotyping, resistance mechanism, and clinical profile of Candida tropicalis blood isolates. Med Mycol J. 2020. https://doi.org/10.1093/mmy/myz124.

    Article  Google Scholar 

  19. Arastehfar A, Daneshnia F, Kord M, Roudbary M, Zarrinfar H, Fang W, Hashemi SJ, Najafzadeh MJ, Khodavaisy S, Pan W, Liao W, Badali H, Rezaie S, Zomorodian K, Hagen F, Boekhout T. Comparison of 21-Plex PCR and API 20C AUX, MALDI-TOF MS, and rDNA sequencing for a wide range of clinically isolated yeast species: Improved identification by combining 21-Plex PCR and API 20C AUX as an alternative strategy for developing countries. Front Cell Infect Microbiol. 2019. https://doi.org/10.3389/fcimb.2019.00021.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Manns JM, Mosser DM, Buckley HR. Production of a hemolytic factor by Candida albicans. Infect Immun. 1994. https://doi.org/10.1128/iai.62.11.5154-5156.1994.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ells R, Kilian W, Hugo A, Albertyn J, Kock JLF, Pohl CH. Virulence of South African Candida albicans strains isolated from different clinical samples. Med Mycol J. 2014. https://doi.org/10.1093/mmy/myt013.

    Article  Google Scholar 

  22. Staib F. Serum-proteins as nitrogen source for yeastlike fungi. J Med Vet Mycol. 1966;4:187–93.

    Article  Google Scholar 

  23. Polak A. Virulence of Candida albicans mutants: Virulenz von Candida albicans-Mutanten. Mycoses. 1992. https://doi.org/10.1111/j.1439-0507.1992.tb00813.x.

    Article  PubMed  Google Scholar 

  24. Slifkin M. Tween 80 opacity test responses of variousCandida species. J Clin Microbiol. 2000. https://doi.org/10.1128/JCM.38.12.4626-4628.2000.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shukla SK, Rao TS. An improved crystal violet assay for biofilm quantification in 96-well microtiter plate. Biorxiv. 2017. https://doi.org/10.1101/100214.

    Article  Google Scholar 

  26. Yigit N, Aktas E, Dagistan S, Ayyildiz A. Investigating biofilm production, coagulase and hemolytic activity in Candida species isolated from denture stomatitis patients. Eurasian J Med. 2011. https://doi.org/10.5152/eajm.2011.06.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wayne PA (2008a) CLSI, Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. CLSI document M27-A3 and Supplement S

  28. Wayne P (2012) Clinical and Laboratory Standards Institute. Reference Method for Broth Dilutionn Antifungal Susceptibility Testing of Yeasts: Fourth Informational Supplement M27-S4

  29. Wayne PA (2018) CLSI, Epidemiological Cutoff Values for Antifungal Susceptibility Testing. 2nd ed., CLSI Supplement M59. 2nd ed: Clinical and Laboratory Standards Institute

  30. Kord M, Salehi M, Khodavaisy S, Hashemi SJ, Ghazvini RD, Rezaei S, Maleki A, Elmimoghaddam A, Alijani N, Abdollahi A, Doomanlou M, Ahmadikia K, Rashidi N, Pan W, Boekhout T, Arastehfar A. Epidemiology of yeast species causing bloodstream infection in Tehran, Iran (2015–2017); superiority of 21-plex PCR over the Vitek 2 system for yeast identification. J. Med. Microbiol. 2020. https://doi.org/10.1099/jmm.0.001189.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sacristán B, Blanco MT, Galán-Ladero MA, Blanco J, Pérez-Giraldo C, Gómez-García AC. Aspartyl proteinase, phospholipase, hemolytic activities and biofilm production of Candida albicans isolated from bronchial aspirates of ICU patients. Med Mycol J. 2011. https://doi.org/10.3109/13693786.2010.482947.

    Article  Google Scholar 

  32. Sachin C, Ruchi K, Santosh S. In vitro evaluation of proteinase, phospholipase and haemolysin activities of Candida species isolated from clinical specimens. Int J Med Biomed Res. 2012. https://doi.org/10.14194/ijmbr.1211.

    Article  Google Scholar 

  33. Atalay MA, Koc AN, Demir G, Sav H. Investigation of possible virulence factors in Candida strains isolated from blood cultures. Niger J Clin Pract. 2015. https://doi.org/10.4103/1119-3077.146979.

    Article  PubMed  Google Scholar 

  34. Deorukhkar SC, Saini S, Mathew S. Virulence factors contributing to pathogenicity of Candida tropicalis and its antifungal susceptibility profile. Int J Microbiol. 2014. https://doi.org/10.1155/2014/456878.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tellapragada C, Eshwara VK, Johar R, Shaw T, Malik N, Bhat PV, Kamath A, Mukhopadhyay C. Antifungal susceptibility patterns, in vitro production of virulence factors, and evaluation of diagnostic modalities for the speciation of pathogenic Candida from blood stream infections and vulvovaginal candidiasis. J Pathog. 2014. https://doi.org/10.1155/2014/142864.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sriphannam C, Nuanmuang N, Saengsawang K, Amornthipayawong D, Kummasook A. Anti-fungal susceptibility and virulence factors of Candida spp. isolated from blood cultures. J Mycol Med. 2019. https://doi.org/10.1016/j.mycmed.2019.08.001.

    Article  PubMed  Google Scholar 

  37. Linares CEB, de Loreto ES, Silveira CP, Pozzatti P, Scheid LA, Santurio JM, Alves SH. Enzymatic and hemolytic activities of Candida dubliniensis strains. Rev Inst Med Trop Sao Paulo. 2007. https://doi.org/10.1590/S0036-46652007000400001.

    Article  PubMed  Google Scholar 

  38. França EJG, Furlaneto-Maia L, Quesada RMB, Favero D, Oliveira MT, Furlaneto MC. Haemolytic and proteinase activities in clinical isolates of Candida parapsilosis and Candida tropicalis with reference to the isolation anatomic site. Mycoses. 2011. https://doi.org/10.1111/j.1439-0507.2009.01825.x.

    Article  PubMed  Google Scholar 

  39. Mushi MF, Bader O, Bii C, Gro U, Mshana SE. Virulence and susceptibility patterns of clinical Candida spp. isolates from a tertiary hospital Tanzania. Med Mycol J. 2019. https://doi.org/10.1093/mmy/myy107.

    Article  Google Scholar 

  40. Rodrigues AG, Pina-Vaz C, Costa-de-Oliveira S, Tavares C. Expression of plasma coagulase among pathogenic Candida species. J Clin Microbiol. 2003. https://doi.org/10.1128/JCM.41.12.5792-5793.2003.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tumbarello M, Posteraro B, Trecarichi EM, Fiori B, Rossi M, Porta R, de Gaetano DK, Sorda ML, Spanu T, Fadda G, Cauda R, Sanguinetti M. Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. Clin Microbiol Infect. 2007. https://doi.org/10.1128/JCM.00131-07.

    Article  Google Scholar 

  42. Negri M, Silva S, Capoci IRG, Azeredo J, Henriques M. Candida tropicalis biofilms: biomass, metabolic activity and secreted aspartyl proteinase production. Mycopathologia. 2016. https://doi.org/10.1007/s11046-015-9964-4.

    Article  PubMed  Google Scholar 

  43. Negri E, Martins M, Henriques M, Svidzinski TLE, Oliveira JAR. Examination of potential virulence factors of Candida tropicalis clinical isolates from hospitalized patients. Mycopathologia. 2010. https://doi.org/10.1007/s11046-009-9246-0.

    Article  PubMed  Google Scholar 

  44. Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother. 2002. https://doi.org/10.1093/jac/dkf049.

    Article  PubMed  Google Scholar 

  45. Wu P-F, Liu W-L, Hsieh M-H, Hii I-M, Lee Y-L, Lin Y-T, Ho M-W, Liu CY-H, Wang F-D. Epidemiology and antifungal susceptibility of candidemia isolates of non-albicans Candida species from cancer patients: non-albicans candidemia in cancer patients. Emerg Microbes Infect. 2017. https://doi.org/10.1038/emi.2017.74.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Khan Z, Ahmad S, Al-Sweih N, Mokaddas E, AlBanwan K, Alfouzan W, Al-Obaid I, Al-Obaid K, Asadzadeh M, Jeragh A, Joseph L, Varghese S, Vayalil S, Al-Musallam O. Changing trends in epidemiology and antifungal susceptibility patterns of six bloodstream Candida species isolates over a 12-year period in Kuwait. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0216250.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vandeputte P, Larcher G, Bergès T, Renier G, Chabasse D, Bouchara J-P. Mechanisms of azole resistance in a clinical isolate of Candida tropicalis. Antimicrob Agents Chemother. 2005. https://doi.org/10.1128/AAC.49.11.4608-4615.2005.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Choi MJ, Won EJ, Shin JH, Kim SH, Lee W-G, Kim M-N, Lee K, Shin MG, Suh SP, Ryang DW, Im YJ. Resistance mechanisms and clinical features of fluconazole-nonsusceptible Candida tropicalis isolates compared with fluconazole-less-susceptible isolates. Antimicrob Agents Chemother. 2016. https://doi.org/10.1128/AAC.02652-15.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Barchiesi F, Calabrese D, Sanglard D, Di Francesco LF, Caselli F, Giannini D, Giacometti A, Gavaudan S, Scalise G. Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750. Antimicrob Agents Chemother. 2000. https://doi.org/10.1128/AAC.44.6.1578-1584.2000.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran (Med80531). This study has been funded and supported by Tehran University of Medical Sciences (TUMS); Grant no. 1400-1-99-53171.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hossein Yadegari or Sadegh Khodavaisy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Nilce M. Martinez-Rossi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasani, E., Yadegari, M.H., Khodavaisy, S. et al. Virulence Factors and Azole-Resistant Mechanism of Candida Tropicalis Isolated from Candidemia. Mycopathologia 186, 847–856 (2021). https://doi.org/10.1007/s11046-021-00580-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-021-00580-y

Keywords

Navigation