Skip to main content
Log in

A comparison of low-level wind profiles from Mode-S EHS data with ground-based remote sensing data

  • Review Article
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The Romanian Air Traffic Services Administration is currently testing the operational production of vertical wind profiles calculated from aircraft-reported Mode-Select enhanced surveillance (EHS) data provided by secondary surveillance radars. This paper presents an estimation and a verification of the biases of the calculated wind components using a reference represented by sodar and lidar measured wind. The biases are caused by errors in the magnetic declination, neglecting the pitch angle of aircraft in the initial climb, and by errors of sodar or lidar orientation. The estimated bias of the meridional components confirms the flight direction dependence of the error of wind components transversal to the flight track found in previous studies, while the strong correlation of wind and flight direction in aerodrome traffic makes this bias to cause a bias of the wind direction more evident at low wind speeds (≃ 10°). The estimated zonal component bias is negligible with descending aircraft, but positive, depending on the pitch angle, up to approximately 50% of the component, with ascending aircraft. The verification of the accuracy of these estimates is performed by comparing the ground-based remote-sensed wind data with the Mode-S EHS derived wind data in the lower boundary layer of Bucharest Henri Coanda airport area. Results show a generally good agreement with the predictions of the measurement error model, with residual errors being assigned to intrinsic instrument measurement errors and assumptions on the average aircraft speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Buzdugan L, Stefan S (2020) A comparative study of lidar, sodar wind measurements and aircraft derived wind observations. Rom J Phys 65:810

    Google Scholar 

  • Chulliat A, Macmillan S, Alken P, Beggan C, Nair M, Hamilton B, Thomson A (2015) The US/UK world magnetic model for 2015–2020

  • de Haan S (2011) High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar. J Geophys Res. https://doi.org/10.1029/2010JD015264

    Article  Google Scholar 

  • de Haan S (2013) An improved correction method for high quality wind and temperature observations derived from Mode-S EHS. KNMI Technical report TR-338. http://bibliotheek.knmi.nl/knmipubTR/TR338.pdf

  • de Haan S (2016) Estimates of Mode-S EHS aircraft-derived wind observation errors using triple collocation. Atmos Meas Tech 9(8):4141–4150. https://doi.org/10.5194/amt-9-4141-2016

    Article  Google Scholar 

  • de Haan S, Stringer S (2017) EMADDC: towards operational collection of Mode-S EHS. http://mode-s.knmi.nl/documents/EMADDC_MET_EXPO_2017_v1.pdf

  • de Jong PM, de Haan S, Sondij J, Koutek M, Hoekstra A, Bokhorst J (2018) Operational use of aircraft derived data for meteorological and other applications, WMO CIMO technical conference on meteorological and environmental instruments and methods of observation, CIMO TECO-2018

  • Drüe C, Hauf T, Hoff A (2010) Comparison of boundary-layer profiles and layer detection by AMDAR and WTR/RASS at Frankfurt airport. Bound Layer Meteorol. https://doi.org/10.1007/s10546-010-9485-0

    Article  Google Scholar 

  • Grappel RD, Wiken RT (2007) Guidance material for Mode-S-specific protocol application avionics. Lincoln Laboratory, Massachusetts Institute of Technology, Lexington

    Book  Google Scholar 

  • International Civil Aviation Organization (1995) Annex 10 to the Convention on International Civil Aviation, Aeronaut. Telecommun. Ser., vol. III, Montreal, Quebec, Canada

  • International Civil Aviation Organization (2017) Technical Provisions for Mode S Services and Extended Squitter, 2nd edn. Technical Report doc. 9871. International Civil Aviation Organization

  • METEK Gmbh (2017) PCS.2000–24/64/MF/LP Sodar User Manual

  • Mirza AK, Ballard SP, Dance SL, Maisey P, Rooney GG, Stone EK (2016) Comparison of aircraft-derived observations with in situ research aircraft measurements. Q J R Meteorol Soc 142(701):2949–2967

    Article  Google Scholar 

  • Painting DJ (2003) AMDAR reference manual. World Meteorological Organization Tech. Rep., vol 958. WMO, pp 84

  • ROMATSA (2019) Aeronautical Information Publication.http://www.aisro.ro. Accessed Apr 2020

  • Stone EK (2018) A comparison of Mode-S enhanced surveillance observations with other in situ aircraft observations. Q J R Meteorol Soc 144(712):695–700. https://doi.org/10.1029/2010JD015264

    Article  Google Scholar 

  • Stone EK, Pearce G (2016) A network of Mode-S receivers for routine acquisition of aircraft-derived meteorological data. J Atmos Ocean Technol 33(4):757–768

    Article  Google Scholar 

  • Strajnar B (2012) Validation of Mode-S meteorological routine air report aircraft observations. J Geophys Res. https://doi.org/10.1029/2012JD018315

    Article  Google Scholar 

  • Thébault E, Finlay CC, Beggan CD et al (2015) International geomagnetic reference field: the 12th generation. Earth Planets Space. https://doi.org/10.1186/s40623-015-0228-9

    Article  Google Scholar 

  • Weinstein B (2009) Correcting the effects of magnetic variation. Boeing AERO magazine. https://www.boeing.com/commercial/aeromagazine/articles/qtr_04_09/pdfs/AERO_Q409.pdf

  • World Meterological Organization (WMO) (2014) Guide to meteorological instruments and methods of observation, WMO-No. 8, Geneva, Switzerland

Download references

Acknowledgements

The authors gratefully acknowledge ROMATSA for the provision of the data used in this scientific paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livius Buzdugan.

Additional information

Responsible editor: Silvia Trini Castelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Using the first order Taylor series expansion of function (u, v) (α, β, γ) about the point \((\alpha_{0} ,\beta_{0} ,\gamma_{0} )\), we obtain a first order estimate the effect of small errors of the variables (α, β, γ) on (u, v), in the vicinity of the point \(\left( {\alpha_{0} ,\beta_{0} ,\gamma_{0} } \right)\):

$$\delta \left( {u,v} \right)\left( {\alpha_{0} ,\beta_{0} ,\gamma_{0} } \right) = \left( {u,v} \right)\left( {\alpha_{0} + \delta \alpha ,\beta_{0} + \delta \beta ,\gamma_{0} + \delta \gamma } \right) - \left( {u,v} \right)\left( {\alpha_{0} ,\beta_{0} ,\gamma_{0} } \right) = \frac{{\partial \left( {u,v} \right)}}{\partial \alpha }\left( {\alpha_{0} ,\beta_{0} ,\gamma_{0} } \right) \cdot \delta \alpha + \frac{{\partial \left( {u,v} \right)}}{\partial \beta }\left( {\alpha_{0} ,\beta_{0} ,\gamma_{0} } \right) \cdot \delta \beta + \frac{{\partial \left( {u,v} \right)}}{\partial \gamma }\left( {\alpha_{0} ,\beta_{0} ,\gamma_{0} } \right) \cdot \delta \gamma$$
(27)

From (4) and (5) we calculate the derivatives of u and v with respect to α, β, γ and approximating cos α = 0, sin α =  + 1/− 1 for α = 80°/260°, we obtain:

$$\frac{\partial u}{{\partial \alpha }} = 0$$
(28)
$$\frac{\partial v}{{\partial \alpha }}\left( {\alpha = 80} \right) = - V_{{\text{g}}}$$
(29)
$$\frac{\partial v}{{\partial \alpha }}\left( {\alpha = 260} \right) = - V_{{\text{g}}}$$
(30)
$$\frac{\partial u}{{\partial \beta }} = v$$
(31)
$$\frac{\partial v}{{\partial \beta }}\left( {\alpha = 260^\circ } \right) = - \left( {V_{{\text{g}}} + u} \right) \cdot \cos \gamma = - V_{{\text{g}}} \cdot \left( {1 + \frac{u}{{V_{{\text{g}}} }}} \right) \cdot \cos \gamma$$
(32)
$$\frac{\partial v}{{\partial \beta }}\left( {\alpha = 80^\circ } \right) = \left( {V_{{\text{g}}} - u} \right) \cdot \cos \gamma = V_{{\text{g}}} \cdot \left( {1 - \frac{u}{{V_{{\text{g}}} }}} \right) \cdot \cos \gamma$$
(33)
$$\frac{\partial u}{{\partial \gamma }}\left( {\alpha = 80} \right) = V_{{\text{a}}} \cdot \sin \gamma \cdot \sin \beta = \left( {V_{{\text{g}}} - u} \right) \cdot tg \gamma = V_{{\text{g}}} \cdot \left( {1 - \frac{u}{{V_{{\text{g}}} }}} \right) \cdot tg \gamma$$
(34)
$$\frac{\partial u}{{\partial \gamma }}\left( {\alpha = 260} \right) = V_{{\text{a}}} \cdot \sin \gamma \cdot \sin \beta = - \left( {V_{{\text{g}}} + u} \right)tg \gamma = - V_{{\text{g}}} \cdot \left( {1 + \frac{u}{{V_{{\text{g}}} }}} \right) \cdot tg \gamma$$
(35)
$$\frac{\partial v}{{\partial \gamma }} = V_{{\text{a}}} \cdot \sin \gamma \cdot \cos \beta = - v \cdot tg\gamma $$
(36)

Considering the flight slopes of ICL aircraft within the dataset (Buzdugan and Stefan 2020), an approximate average value of the aircraft pitch angle of 10° was determined. For this value, tg γγ, from which (27) yields the error estimates for the wind components u and v for zonal ICL flights:

$$\delta u\left( {\alpha = 80,\beta , \gamma } \right) = v \cdot \delta \beta + V_{{\text{g}}} \cdot\left( {1 - \frac{u}{{V_{{\text{g}}} }}} \right) \cdot \gamma \cdot \delta \gamma$$
(37)
$$\delta u\left( {\alpha = 260,\beta , \gamma } \right) = v \cdot \delta \beta - V_{{\text{g}}} \cdot \left( {1 + \frac{u}{{V_{{\text{g}}} }}} \right) \cdot \gamma \cdot \delta \gamma$$
(38)
$$\delta v\left( {\alpha = 80 ,\beta , \gamma } \right) = - V_{{\text{g}}} \cdot \delta \alpha + V_{{\text{g}}} \cdot \left( {1 - \frac{u}{{V_{{\text{g}}} }}} \right) \cdot \cos \gamma \cdot \delta \beta - v \cdot \gamma \cdot \delta \gamma$$
(39)
$$\delta v\left( {\alpha = 260 ,\beta , \gamma } \right) = V_{{\text{g}}} \cdot \delta \alpha - V_{{\text{g}}} \cdot \left( {1 + \frac{u}{{V_{{\text{g}}} }}} \right) \cdot \cos \gamma \cdot\delta \beta - v\cdot \gamma \cdot\delta \gamma $$
(40)

Apart from ICL, the pitch angle \(\gamma\) is sufficiently small we can approximate cos \(\gamma\) = 1 and tg \(\gamma\) = 0, so (37)–(40) become the error estimates for u and v components for zonal descending flights:

$$\delta u\left( {\alpha = 80,\beta , \gamma } \right) = \delta u\left( {\alpha = 260,\beta , \gamma } \right) = v \cdot \delta \beta$$
(41)
$$\delta v\left( {\alpha = 80 ,\beta , \gamma } \right) = - V_{{\text{g}}} \cdot\delta \alpha + V_{{\text{g}}} \cdot \left( {1 - \frac{u}{Vg}} \right) \cdot \delta \beta$$
(42)
$$\delta v\left( {\alpha = 260 ,\beta , \gamma } \right) = V_{{\text{g}}} \cdot \delta \alpha - V_{{\text{g}}} \cdot \left( {1 + \frac{u}{{V_{{\text{g}}} }}} \right) \cdot \delta \beta$$
(43)

Appendix 2

The errors of the measured components us and vs depend on the error of the instrument orientation angle against the true north, measured clockwise:

$$\delta u_{{\text{s}}} = V_{{\text{s}}} \cdot \cos \varphi \cdot \delta \varphi$$
(44)
$$\delta v_{{\text{s}}} = V_{{\text{s}}} \cdot \sin \varphi \cdot \delta \varphi$$
(45)

After averaging over the data sample, in zonal winds (φ = 270° and φ = 90°) we get:

$$\overline{{\delta u_{{\text{s}}} }} = 0$$
(46)
$$\overline{{\delta v_{{\text{s}}} }} = \overline{{V_{{\text{s}}} }} \cdot \delta \varphi \quad {\text{for easterly wind}}$$
(47)
$$\overline{{\delta v_{{\text{s}}} }} = - { }\overline{{V_{{\text{s}}} }} \cdot{ }\delta \varphi \quad {\text{for westerly wind}}{.}$$
(48)

Thus, in zonal winds, the measurement error of the u component caused by the instrument orientation error is negligible.

Recalling Fig. 5, we notice that the observed dependence of the v component bias on the wind direction is also compatible with a positive value of the instrument orientation error angle δφ.

If we assign the index “ms” to the Mode-S EHS derived wind, and the index “s” to the remotely sensed wind, and by noting with u and v the true values of the wind components, we have:

$$u_{{{\text{ms}}}} = u + \delta u_{{{\text{ms}}}}$$
(49)
$$u_{{\text{s}}} = u + \delta u_{{\text{s}}}$$
(50)
$$v_{{{\text{ms}}}} = v + \delta v_{{{\text{ms}}}}$$
(51)
$$v_{{\text{s}}} = v + \delta v_{{\text{s}}}$$
(52)

Averaging the subtracted equations corresponding to the same component over the entire dataset, and considering (46), we obtain the following estimates of the mean differences between the Mode-S EHS derived and sodar measured components:

$$\overline{{v_{{{\text{ms}}}} - v_{{\text{s}}} }} = \overline{{\delta v_{{{\text{ms}}}} }} - \overline{{\delta v_{{\text{s}}} }}$$
(53)
$$\overline{{u_{{{\text{ms}}}} - u_{{\text{s}}} }} = \overline{{\delta u_{{{\text{ms}}}} }} $$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzdugan, L., Bugeac, O.P. & Stefan, S. A comparison of low-level wind profiles from Mode-S EHS data with ground-based remote sensing data. Meteorol Atmos Phys 133, 1455–1468 (2021). https://doi.org/10.1007/s00703-021-00820-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-021-00820-2

Navigation