Skip to main content

Advertisement

Log in

Dual HDAC/BRD4 inhibitors against cancer

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Despite much research and undeniable advances, cancer treatment and prevention has remained a major challenge for scientists. Both genetic and epigenetic changes are involved in the growth and development of cancer complex and multifactorial disease. Among the possible treatment options, multidrug epigenetic therapy such as the use of dual epigenetic inhibitors, has been a popular option in recent years. Histone deacetylases (HDACs) as epigenetic eraser and bromodomain-containing protein 4 (BRD4) as epigenetic reader are epigenetic modifiers, which are rapidly being investigated. Using of a single molecule that simultaneously targets HDACs and BRD4 has been recently employed by medicinal chemists. Presently, there are no approved BRD4 inhibitor and dual BRD4/HDAC inhibitor in the drug market but evidence suggests their possible therapeutic potential in various diseases, such as cancer. In this review, the overall structure of the synthesized dual BRD4/HDAC small molecule inhibitors, lead compounds, and the biological and pharmacological properties of the most potent dual BRD4/HDAC inhibitor in each category are all collected in the hopes of assisting in the development of stronger and more selective dual BRD4/HDAC inhibitors in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Ducasse M, Brown MA. Epigenetic aberrations and cancer. Mol Cancer. 2006;5:60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics. 2016;8:98.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.

    Article  CAS  PubMed  Google Scholar 

  5. Shen S, Kozikowski AP. A patent review of histone deacetylase 6 inhibitors in neurodegenerative diseases (2014-2019). Expert Opin Ther Pat. 2020;30:121–36.

    Article  CAS  PubMed  Google Scholar 

  6. Hu S, Cho E-H, Lee J-Y. Histone deacetylase 9: its role in the pathogenesis of diabetes and other chronic diseases. Diabetes Metab J. 2020;44:234–44.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu K, Dai X-L, Huang H-C, Jiang Z-F. Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxid Med Cell Longev. 2011;2011:143269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhang L, Sheng S, Qin C. The role of HDAC6 in Alzheimer’s disease. J Alzheimer’s Dis. 2013;33:283–95.

    Article  CAS  Google Scholar 

  9. Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov. 2014;13:337–56.

    Article  CAS  PubMed  Google Scholar 

  10. Tandon H, Chakraborty T, Suhag V. A new model of atomic nucleophilicity index and its application in the field of QSAR. Int J Quant Struct-Prop Relatsh. 2019;4:99–117.

    Google Scholar 

  11. Hughes D, Andersson DI. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat Rev Genet. 2015;16:459–71.

    Article  CAS  PubMed  Google Scholar 

  12. Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr Opin Struct Biol. 2006;16:127–36.

    Article  CAS  PubMed  Google Scholar 

  13. Bolognesi ML, Cavalli A. Multitarget drug discovery and polypharmacology. ChemMedChem. 2016;11:1190–2.

    Article  CAS  PubMed  Google Scholar 

  14. Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery: miniperspective. J Med Chem. 2014;57:7874–87.

    Article  CAS  PubMed  Google Scholar 

  15. Heinemann A, Cullinane C, De Paoli-Iseppi R, Wilmott JS, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Borbely G, Haldosen L-A, Dahlman-Wright K, Zhao C. Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells. Oncotarget. 2015;6:33623.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shahbazi J, Liu PY, Atmadibrata B, Bradner JE, Marshall GM, Lock RB, et al. The bromodomain inhibitor JQ1 and the histone deacetylase inhibitor panobinostat synergistically reduce N-Myc expression and induce anticancer effects. Clin Cancer Res. 2016;22:2534–44.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang W, Bai Y, Wang Y, Xiao W. Polypharmacology in drug discovery: a review from systems pharmacology perspective. Curr Pharm Des. 2016;22:3171–81.

    Article  CAS  PubMed  Google Scholar 

  19. Taniguchi Y. The bromodomain and extra-terminal domain (BET) family: functional anatomy of BET paralogous proteins. Int J Mol Sci. 2016;17:1849.

    Article  PubMed Central  CAS  Google Scholar 

  20. Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 1992;20:2603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Z, Wang P, Chen H, Wold EA, Tian B, Brasier AR, et al. Drug discovery targeting bromodomain-containing protein 4. J Med Chem. 2017;60:4533–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang YW, Veschambre P, Erdjument-Bromage H, Tempst P, Conaway JW, Conaway RC, et al. Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. Proc Natl Acad Sci. 1998;95:8538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dey A, Ellenberg J, Farina A, Coleman AE, Maruyama T, Sciortino S, et al. A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G2-to-M transition. Mol Cell Biol. 2000;20:6537–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu X, Liu D, Gao X, Xie F, Tao D, Xiao X, et al. Inhibition of BRD4 suppresses cell proliferation and induces apoptosis in renal cell carcinoma. Cell Physiol Biochem. 2017;41:1947–56.

    Article  CAS  PubMed  Google Scholar 

  25. Hajmirza A, Emadali A, Gauthier A, Casasnovas O, Gressin R, Callanan MB. BET family protein BRD4: an emerging actor in NFκB signaling in inflammation and cancer. Biomedicines. 2018;6:16.

    Article  PubMed Central  CAS  Google Scholar 

  26. Huang B, Yang X-D, Zhou M-M, Ozato K, Chen L-F. Brd4 coactivates transcriptional activation of NF-κB via specific binding to acetylated RelA. Mol Cell Biol. 2009;29:1375–87.

    Article  CAS  PubMed  Google Scholar 

  27. You J, Li Q, Wu C, Kim J, Ottinger M, Howley PM. Regulation of aurora B expression by the bromodomain protein Brd4. Mol Cell Biol. 2009;29:5094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ba M, Long H, Yan Z, Wang S, Wu Y, Tu Y, et al. BRD4 promotes gastric cancer progression through the transcriptional and epigenetic regulation of c‐MYC. J Cell Biochem. 2018;119:973–82.

    Article  CAS  PubMed  Google Scholar 

  29. Alqahtani A, Choucair K, Ashraf M, Hammouda DM, Alloghbi A, Khan T, et al. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci OA. 2019;5:FSO372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Noguchi-Yachide T. BET bromodomain as a target of epigenetic therapy. Chem Pharm Bull. 2016;64:540–7.

    Article  CAS  Google Scholar 

  31. Conway SJ. Bromodomains: are readers right for epigenetic therapy? ACS Medicinal Chemistry Letters. 2012;3:691–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garnier J-M, Sharp PP, Burns CJ. BET bromodomain inhibitors: a patent review. Expert Opin Ther Pat. 2014;24:185–99.

    Article  CAS  PubMed  Google Scholar 

  33. Lu T, Lu W, Luo C. A patent review of BRD4 inhibitors (2013–2019). Expert Opin Ther Pat. 2020;30:57–81.

    Article  CAS  PubMed  Google Scholar 

  34. Maxmen A. Open ambition. Nature. 2012;488:148.

    Article  CAS  PubMed  Google Scholar 

  35. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albrecht BK, Gehling VS, Hewitt MC, Vaswani RG, Côté A, Leblanc Y, et al. Identification of a benzoisoxazoloazepine inhibitor (CPI-0610) of the bromodomain and extra-terminal (BET) family as a candidate for human clinical trials. Journal of Medicinal Chemistry. 2016;59:1330–9.

    Article  CAS  PubMed  Google Scholar 

  37. Siu K, Ramachandran J, Yee A, Eda H, Santo L, Panaroni C, et al. Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma. Leukemia. 2017;31:1760–9.

    Article  CAS  PubMed  Google Scholar 

  38. Nicholls SJ, Ray KK, Johansson JO, Gordon A, Sweeney M, Halliday C, et al. Selective BET protein inhibition with apabetalone and cardiovascular events: a pooled analysis of trials in patients with coronary artery disease. Am J Cardiovasc Drugs. 2018;18:109–15.

    Article  CAS  PubMed  Google Scholar 

  39. Tsujikawa L, Fu L, Das S, Rakai BD, Sarsons CD, Halliday C. et al. Apabetalone, an epigenetic BET inhibitor in a phase 3 trial, inhibits vascular inflammation and cellular adhesion leading to beneficial outcomes in CVD patients. J Am Coll Cardiol. 2019;73 Suppl_1:2063.

    Article  Google Scholar 

  40. Ray K, Nicholls S, Sweeney M, Johansson J, Wong N, Kulikowski E, et al. BET protein inhibition and cognition: a pre-specified substudy of the BETonMACE Phase 3 Trial evaluating apabetalone in patients with diabetes and acute coronary syndrome. Age (yrs). 2019;62:88.

    Google Scholar 

  41. Pemmaraju N, Borate U, Solh M, Borthakur GM, DeZern AE, Zhang C, et al. Dose escalation study of BET inhibitor plx2853 in patients with relapsed or refractory acute myeloid leukemia or high risk myelodysplastic syndrome. Blood. 2019;134:1391.

    Article  Google Scholar 

  42. Choe HK, Gao Y, Snyder K, Powell B, Bollag G, Ranganathan P. Bromodomain and extraterminal (BET) domain inhibition with PLX51107 and PLX2853 improves survival and decreases acute GVHD severity in murine models. Blood. 2019;134:4429.

    Article  Google Scholar 

  43. Upadhyay E. Chemical approaches to study the effect of histone post-translational modifications. 2019.

  44. Andrews FH, Strahl BD, Kutateladze TG. Insights into newly discovered marks and readers of epigenetic information. Nat Chem Biol. 2016;12:662–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao S, Yue Y, Li Y, Li H. Identification and characterization of ‘readers’ for novel histone modifications. Curr Opin Chem Biol. 2019;51:57–65.

    Article  CAS  PubMed  Google Scholar 

  46. Yang X, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26:5310.

    Article  CAS  PubMed  Google Scholar 

  47. Manal M, Chandrasekar M, Priya JG, Nanjan M. Inhibitors of histone deacetylase as antitumor agents: a critical review. Bioorg Chem. 2016;67:18–42.

    Article  CAS  PubMed  Google Scholar 

  48. Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001;92:1300–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song Y, Shiota M, Tamiya S, Kuroiwa K, Naito S, Tsuneyoshi M. The significance of strong histone deacetylase 1 expression in the progression of prostate cancer. Histopathology. 2011;58:773–80.

    Article  PubMed  Google Scholar 

  50. Higashijima J, Kurita N, Miyatani T, Yoshikawa K, Morimoto S, Nishioka M, et al. Expression of histone deacetylase 1 and metastasis-associated protein 1 as prognostic factors in colon cancer. Oncol Rep. 2011;26:343–8.

    PubMed  Google Scholar 

  51. Qiao W, Liu H, Liu R, Liu Q, Zhang T, Guo W, et al. Prognostic and clinical significance of histone deacetylase 1 expression in breast cancer: a meta-analysis. Clin Chim Acta. 2018;483:209–15.

    Article  CAS  PubMed  Google Scholar 

  52. Minamiya Y, Ono T, Saito H, Takahashi N, Ito M, Mitsui M, et al. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer. 2011;74:300–4.

    Article  PubMed  Google Scholar 

  53. Li C, Cao L, Xu C, Liu F, Xiang G, Liu X, et al. The immunohistochemical expression and potential prognostic value of HDAC6 and AR in invasive breast cancer. Hum Pathol. 2018;75:16–25.

    Article  CAS  PubMed  Google Scholar 

  54. Oehme I, Deubzer HE, Wegener D, Pickert D, Linke J-P, Hero B, et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res. 2009;15:91–9.

    Article  CAS  PubMed  Google Scholar 

  55. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92:1210–6.

    Article  CAS  PubMed  Google Scholar 

  56. Mei S, Ho AD, Mahlknecht U. Role of histone deacetylase inhibitors in the treatment of cancer. Int J Oncol. 2004;25:1509–19.

    CAS  PubMed  Google Scholar 

  57. Kouraklis G, Theocharis S. Histone deacetylase inhibitors and anticancer therapy. Curr Med Chem-Anti-Cancer Agents. 2002;2:477–84.

    Article  CAS  Google Scholar 

  58. Bai Y, Ahmad D, Wang T, Cui G, Li W. Research advances in the use of histone deacetylase inhibitors for epigenetic targeting of cancer. Curr Top Med Chem. 2019;19:995–1004.

    Article  CAS  PubMed  Google Scholar 

  59. Rajak H, Singh A, Raghuwanshi K, Kumar R, Dewangan P, Veerasamy R, et al. A structural insight into hydroxamic acid based histone deacetylase inhibitors for the presence of anticancer activity. Curr Med Chem. 2014;21:2642–64.

    Article  CAS  PubMed  Google Scholar 

  60. Mwakwari CS, Patil V, Guerrant W, Oyelere KA. Macrocyclic histone deacetylase inhibitors. Curr Top Med Chem. 2010;10:1423–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rajak H, Singh A, Dewangan KP, Patel V, Jain KD, Tiwari KS, et al. Peptide based macrocycles: selective histone deacetylase inhibitors with antiproliferative activity. Curr Med Chem. 2013;20:1887–903.

    Article  CAS  PubMed  Google Scholar 

  62. Moradei O, Vaisburg A, Martell RE. Histone deacetylase inhibitors in cancer therapy: new compounds and clinical update of benzamide-type agents. Curr Top Med Chem. 2008;8:841–58.

    Article  CAS  PubMed  Google Scholar 

  63. Newbold A, Falkenberg KJ, Prince HM, Johnstone RW. How do tumor cells respond to HDAC inhibition?. FEBS J. 2016;283:4032–46.

    Article  CAS  PubMed  Google Scholar 

  64. Sangwan R, Rajan R, Mandal PK. HDAC as onco target: reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem. 2018;158:620–706.

    Article  CAS  PubMed  Google Scholar 

  65. Atkinson SJ, Soden PE, Angell DC, Bantscheff M, Chung C-W, Giblin KA, et al. The structure based design of dual HDAC/BET inhibitors as novel epigenetic probes. MedChemComm. 2014;5:342–51.

    Article  CAS  Google Scholar 

  66. Zhang G, Smith SG, Zhou M-M. Discovery of chemical inhibitors of human bromodomains. Chem Rev. 2015;115:11625–68.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Z, Hou S, Chen H, Ran T, Jiang F, Bian Y, et al. Targeting epigenetic reader and eraser: Rational design, synthesis and in vitro evaluation of dimethylisoxazoles derivatives as BRD4/HDAC dual inhibitors. Bioorg Med Chem Lett. 2016;26:2931–5.

    Article  CAS  PubMed  Google Scholar 

  68. Amemiya S, Yamaguchi T, Hashimoto Y, Noguchi-Yachide T. Synthesis and evaluation of novel dual BRD4/HDAC inhibitors. Bioorg Med Chem. 2017;25:3677–84.

    Article  CAS  PubMed  Google Scholar 

  69. Shao M, He L, Zheng L, Huang L, Zhou Y, Wang T, et al. Structure-based design, synthesis and in vitro antiproliferative effects studies of novel dual BRD4/HDAC inhibitors. Bioorg Med Chem Lett. 2017;27:4051–5.

    Article  CAS  PubMed  Google Scholar 

  70. Cheng G, Wang Z, Yang J, Bao Y, Xu Q, Zhao L, et al. Design, synthesis and biological evaluation of novel indole derivatives as potential HDAC/BRD4 dual inhibitors and anti-leukemia agents. Bioorg Chem. 2019;84:410–7.

    Article  CAS  PubMed  Google Scholar 

  71. He S, Dong G, Li Y, Wu S, Wang W, Sheng C. Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer. Angew Chem Int Ed. 2020;59:3028–32.

    Article  CAS  Google Scholar 

  72. Pan Z, Li X, Wang Y, Jiang Q, Jiang L, Zhang M, et al. Discovery of thieno [2, 3-d] pyrimidine-based hydroxamic acid derivatives as bromodomain-containing protein 4/histone deacetylase dual inhibitors induce autophagic cell death in colorectal carcinoma cells. J Med Chem. 2020;63:3678–700.

    Article  CAS  PubMed  Google Scholar 

  73. Ouyang L, Zhang L, Liu J, Fu L, Yao D, Zhao Y, et al. Discovery of a small-molecule bromodomain-containing protein 4 (BRD4) inhibitor that induces AMP-activated protein kinase-modulated autophagy-associated cell death in breast cancer. J Med Chem. 2017;60:9990–10012.

    Article  CAS  PubMed  Google Scholar 

  74. Campbell GR, Bruckman RS, Herns SD, Joshi S, Durden DL, Spector SA. Induction of autophagy by PI3K/MTOR and PI3K/MTOR/BRD4 inhibitors suppresses HIV-1 replication. J Biol Chem. 2018;293:5808–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sakamaki J-I, Ryan KM. Transcriptional regulation of autophagy and lysosomal function by bromodomain protein BRD4. Autophagy. 2017;13:2006–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wen X, Klionsky DJ. BRD4 is a newly characterized transcriptional regulator that represses autophagy and lysosomal function. Autophagy. 2017;13:1801–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen J, Li Y, Zhang J, Zhang M, Wei A, Liu H, et al. Discovery of selective HDAC/BRD4 dual inhibitors as epigenetic probes. Eur J Med Chem. 2021;209:112868.

    Article  CAS  PubMed  Google Scholar 

  78. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Ghodsi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidkhah, N., Hadizadeh, F. & Ghodsi, R. Dual HDAC/BRD4 inhibitors against cancer. Med Chem Res 30, 1822–1836 (2021). https://doi.org/10.1007/s00044-021-02776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02776-9

Keywords

Navigation